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Plan for the talk

I'll discuss a cluster of observations on points of contact between
truthmaker and information semantics. These fall under three
connected themes:

- Information states (& la BSML) and Containment.
- Truthmakers and Inclusion.

- Translations.
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v: At — {0,1},

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t < {v | v : At — {0,1}}, t = .

Definition (Semantic clauses)
Fort < {v|v: At — {0,1}}, we define
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Containment logics obey the the proscriptive principle:
e implies At(p) 2 At(e).
Strong form of variable sharing:
oY implies At(p) N At(y) # @.
Signature invalidities:

T.pA—pHq [like relevant logics]
2. pitqgv —q [like relevant logics]
3.p¥pvy [like BSML]
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Angell’s Analytic Entailment (AC)

One prominent containment logic is Angell's analytic entailment AC.
AC is, as shown by Ferguson (2016) and Fine (2016), the containment
fragment of FDE:

Y hac iff  ¢rrpe ¥ and Lit(y) 2 Lit(y).
Of interest to us because:

- Itis a containment logic.
- Fine (2016) provided a complete truthmaker semantics for AC.
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BSML semantics: fort € P({v | v : At — P({0,1})} we

define
tE=p iff Vveto(p) 1
t=p iff VYvetv(p) 30
teE —p iff t=¢
t= - iff tE=op

tepvey iff 3¢, suchthatt = ¢;t" = andt =t ut”
tdpvy if tdpandtdy
tepay Iff tEpandteEy
tadponay iff FU, " suchthatt' g ¢;t" d¢; andt =t ut’.

Problem solved: p A —p ¥ q. v/
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BSML-style semantics for AC

Four-val. BSML* semantics: Given P(X), VT, V™~ : At - PP(X) st

- V*(p) is an ideal but for the empty set;
- V= (p) is an ideal but for the empty set,

we define for t € P(X)

tEp
t=p
tE —p
t=—p
t=epvy
tdpvy
t=Eo Ay
tdony

iff
iff
iff

teV*(p)
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FDE, AC, and BSML*

FDE AC BSML*
Always: [p] =7 > 2. Possibly: [p] = Z. Never: [p] =Z 3 @.
Example: Example: Example:

{zy

. Mr&z}

[p] = blue;
[=r] =

{2,y,7}
{xww}

[p] = blue;

[~p] =red. }
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We obtained a complete semantics for AC.
Question: As AC is characterized by
¢ FrpE % and Lit(p) 2 Lit(¥),
can we also give semantics for the logic characterized by
¢ Frpe ¥ and At(p) 2 At(e)?"
Theorem
Require VT (p) # @ = V™ (p) # @. Then

ey Iff @lrpeYand At(p) 2 At(y).

Proof. As before (note available). [Proofs work for distr. lattices too.]
Follow-ups:
- What other containment logics arise by varying the frames (lattices,
semilattices, distributive semilattices, etc.) or valuations?
- For instance, can we obtain a complete semantics for Correia’s
(2016) logic of factual equivalence?

TDaniels (1990); Priest (2010).
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And recall the two guiding themes:

1. Points of contact between BSML and truthmaker
semantics.

2. BSML-style semantics for containment logics.
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Replete truthmaker entailment

Write ¢ I ¢ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)
oI iff - E - J

Proof.
Y E—p Iff =9 Fppe —pandLit(—1y) 2 Lit(—¢)
iff ¢ +Frpe ¥ and Lit(p) < Lit(y)
iff ©lI-. O

Theorem?

Replete truthmaker entailment is the inclusion fragment of FDE; i.e.,

YI- iff ¢ bkrpr ¥ and Lit(y) € Lit(y).

2] imagine this is known, but | haven't found it stated.
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A sample of corollaries

Corollary
¢ Frpe ¥ and Lit(e) = Lit(y) iff pEYand ¢ E —p
iff —¥IF—pandpl- .
¢ A-rpe ¥ and Lit(y) 2 Lit(y) iff pEYand —p = —1
iff =Y IF—pandy - .

Corollary (when V*(p) # @ < V—(p) # @)
¢ rpe P and At(p) = At(y) iff pEyYand —yY E —p.
¢ 4rpr ¥ and At(p) 2 At(y) If @EYand —p E .

Corollary

Y ac ¢ iff = = —e.

Likewise, duals of Fine's (2016) valence/partial-truth accounts of AC
characterize replete truthmaker entailment (as FDE is equivalently
defined as reflection of falsity).
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When is a semantics exact?

- Say that & satisfies the inclusion principle if
wEY implies At(p) < At(e).
- By analogy to relevant logics, | wish to propose/entertain:

Criterion for exactness

A semantics is exact, or wholly relevant, only if its entailment
relation satisfies the inclusion principle.

- Non-incl./incl./replete entailment all come out exact. v
- Caveat T: ¢ A (¢ — ¥) IF ¢ only when At(p) < At(y)?

- Caveat 2: How about explosion and its dual? Perhaps inclusion
modulo explosion and its dual??

3The signature invalidities of ‘inclusion logics’ include explosion and its dual, but
maybe exactness should only generalize the invalidity of simplification (think
counterfactuals, modalities, etc.).

1






Remark 2: On replete entailment and wholly
relevance.
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A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:
1) For A; a conjunction of literals, and B; a disjunction of literals, let
A -1 B;j Aiff  Lit(4;) n Lit(B;) # @.
2) Lift it as follows:
\VAirr AB; iff  Vij:Aibr B
3) For arbitrary ¢, ¢ with normal forms ¢ = \/ A, = A B;, define
prry it \/Airr A B;.
Fact. o -ppr ¢ Iff o 1 9.
Equivalently,
errpety iff fa A fa By, te. le Lit(4;) st [ € Lit(B))
© I iff  fa. A;:(i) fa. Bj, te leLit(A4;) st | € Lit(By);
(i) fa. I € Lit(4;), te. B, st [ € Lit(B;).
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Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be
given a double-barreled analysis?

2. For instance, can (non-)inclusive entailment be captured by
stronger inclusion principles?

3. Can (or has) a truthmaker semantics been given for
Y FFDE P and At(QD) c At(lﬁ)?

4. Replete entailment admits BSML-style contrapositive semantics
(¢ IF ¢ = = = —p). Do (non-)inclusive entailment also?

5. Which other truthmaker logics admit A-B analyses?*

40bs: Failure of distributivity.
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Source logic: BSML with NE and ¢

Fix a non-empty finite set of propositional variables At, and define:

pu=L[NE|p|—p|lovelonp]| o

Definition
Fort < {v|v: At — {0,1}}, we have

t = NE iff t+ o

t = NE iff t=g

tE $p iff dsctsuchthatg #skE @
t= $p iff Vsct:s=o

tE L iff t=0

td L always

14
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Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

pu=L|p|—p|evel|supee | {s*)e,

forpe Aty := {p4,p— | p € At}, interpreted over distributive
semilattices (S, v), where

sl {supypyp iff Jt,ust ti-e, ul-, and s =t v u.
s {s*Hp iff 3s1,...,s, 5t eachs;l-pands=51v - Vs,

Objective: Define translation pair -, -~ sit. for all ¢, 1:

wEY iff Lo IFyT.



Translating BSML

Set

and define -+, -~ via the double-recursive clauses:

J_Jr

I := {H(NET v NE7), /\ (supyptp~},
peEAt

NE

A\~ Ap?)

peEALt
H{(S*)p+

¥
(sup)p™ P
SD-f- A ’l/J+
P(NET A ¢™)

N\ @ Ap7)

peEAt
H{s* p_

T AYT
(supyp~ 9~
Ho™.




Translating BSML

Set
I = {H(NEY v NED), A sup)ptp),
peAt
and define -, -~ via the double-recursive clauses:
1T = NET 1= 3= T
NEF = A (T ApT) NE~ = A@ rp)
peEAt peEAt
pt o= H(s")ps I = H(s")p-
(o) = e (o)™ = T
(evy)™ = (supypTy™ (evy)™ = ¢~ Ag”
(pAg)™ = ot ay” (pry)” = (suppp ¢~
(#0)" = P(NET A ") (40)” = Hy™

Theorem
pEY iff  T,ot -oyt. J
16




BSML translation contra truthmaker translation

Translation clauses for BSML:

()" = Hs*ps ()~ = H(s")p-
(o)™ = ¢~ (=)~ = F
(pv)t = (supppty® (pvey)™ = ¢ Ay
(pr)t = ofay” (pA®)” = (supyp 9.




BSML translation contra truthmaker translation

Translation clauses for BSML:

()" = Hs*ps ()~ = H(s")p-
(o)™ = ¢~ (=)~ = F
(pv)t = (supppty® (pvey)™ = ¢ Ay
(pr)t = ofay” (pAy)” = (suppp 9

= ps (p)~ = p
()t = ¢ (—p)~ = o*
(pAp)t = (supyptyt (prg)” = @ vy~
(pv)t = pf vyt (pve)™ = (suppp 9.

5Van Benthem (2019); see also SBK (2023).
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For the case of inquisitive logic, translate v, — as follows:

(pv)T =" vyt
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Translating inquisitive logic

For the case of inquisitive logic, translate v, — as follows:

(pv)T =" vyt
(p = P)* = H(p* —¥™).

Theorem (translation of Inq)

0EY iff et iot.

Remark

The translation can be extended to other propositional team logics
too, including all fragments of the grammar:

pu=L|NE|p|—alove|lorp|do|love|lp—p|~p|

=(&d) | 6lad | @< d|dld|ara.




Thank you!
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semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

In team semantics,
conditions are teams.

So, propositions are sets of
teams. Caveat: The standard
terminology is not

‘propositions’ but ‘properties’.
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(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider
natural restrictions on what a proposition is. Or what different kinds of
propostions/meanings there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)
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Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily
expressible in single-valuation semantics; and thus for considering
new notions of propositionhood!

Definition (some restrictions on propositionhood)

¢ is downward closed: [sEdandtSs] = tE¢

¢ is union closed: [sE¢faseS+2] — | JSE4
¢ has the empty team property: & & ¢

¢ is flat: sE¢p < {viEo¢forallves

¢ is convex: [sEduEsCtcu] = tE=¢

4

Convexity generalizes downward closure:

downward closed = convex

22
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Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of
propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e,, classical
assertions are flat]

- Formulas with v need not be union closed [i.e,, questions are not
union closed]

- Consider the epistemic might operator ¢, defined as
SE#) — FHCs:t#D&tE 9.

Formulas with 4 are not downward closed [i.e., epistemic
uncertainty is not persistent]

Theorem (Anttila and SBK (under review))
BSML is expressively complete for convex and union-closed properties. J
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