

Truthmakers and Information States

Inclusion, Containment, Duality

Søren Brinck Knudstorp

ILLC and Philosophy, University of Amsterdam

Prague, November 18, 2025

Workshop on Truthmakers, Possibilities, and Information States

Plan for the talk

I'll discuss a cluster of observations on points of contact between truthmaker and information semantics. These fall under three connected themes:

- Information states (à la BSML) and Containment.
- Truthmakers and Inclusion.
- Translations.

Plan for the talk

I'll discuss a cluster of observations on points of contact between truthmaker and information semantics. These fall under three connected themes:

- Information states (à la BSML) and Containment.
- Truthmakers and Inclusion.
- Translations.

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

$$t \models p \quad \text{iff} \quad \forall v \in t, v(p) = 1$$

$$t \dashv p \quad \text{iff} \quad \forall v \in t, v(p) = 0$$

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

$$t \models p \quad \text{iff} \quad \forall v \in t, v(p) = 1$$

$$t \dashv p \quad \text{iff} \quad \forall v \in t, v(p) = 0$$

$$t \models \neg\varphi \quad \text{iff} \quad t \dashv \varphi$$

$$t \dashv \neg\varphi \quad \text{iff} \quad t \models \varphi$$

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

$$t \models p \quad \text{iff} \quad \forall v \in t, v(p) = 1$$

$$t \dashv p \quad \text{iff} \quad \forall v \in t, v(p) = 0$$

$$t \models \neg\varphi \quad \text{iff} \quad t \dashv \varphi$$

$$t \dashv \neg\varphi \quad \text{iff} \quad t \models \varphi$$

$$t \models \varphi \vee \psi \quad \text{iff} \quad \exists t', t'' \text{ such that } t' \models \varphi; t'' \models \psi; \text{ and } t = t' \cup t''$$

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

$t \models p$	iff	$\forall v \in t, v(p) = 1$
$t \dashv p$	iff	$\forall v \in t, v(p) = 0$
$t \models \neg\varphi$	iff	$t \dashv \varphi$
$t \dashv \neg\varphi$	iff	$t \models \varphi$
$t \models \varphi \vee \psi$	iff	$\exists t', t'' \text{ such that } t' \models \varphi; t'' \models \psi; \text{ and } t = t' \cup t''$
$t \dashv \varphi \vee \psi$	iff	$t \dashv \varphi \text{ and } t \dashv \psi$
$t \models \varphi \wedge \psi$	iff	$t \models \varphi \text{ and } t \models \psi$

Traditionally (in, e.g., CPC), formulas φ are evaluated at **single valuations** $v : \mathbf{At} \rightarrow \{0, 1\}$, $v \models \varphi$.

In BSML, like in inquisitive semantics, formulas are evaluated at **sets of valuations ('teams')** $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, $t \models \varphi$.

Definition (Semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we define

$t \models p$	iff	$\forall v \in t, v(p) = 1$
$t \dashv p$	iff	$\forall v \in t, v(p) = 0$
$t \models \neg\varphi$	iff	$t \dashv \varphi$
$t \dashv \neg\varphi$	iff	$t \models \varphi$
$t \models \varphi \vee \psi$	iff	$\exists t', t'' \text{ such that } t' \models \varphi; t'' \models \psi; \text{ and } t = t' \cup t''$
$t \dashv \varphi \vee \psi$	iff	$t \dashv \varphi \text{ and } t \dashv \psi$
$t \models \varphi \wedge \psi$	iff	$t \models \varphi \text{ and } t \models \psi$
$t \dashv \varphi \wedge \psi$	iff	$\exists t', t'' \text{ such that } t' \dashv \varphi; t'' \dashv \psi; \text{ and } t = t' \cup t''.$

Inferential patterns:

$$p \not\models p \vee q$$

$$p \wedge q \vDash p$$

Inferential patterns:

$$p \not\models p \vee q$$

$$p \wedge q \vDash p$$

Observation 1: Mirror image of truthmaker entailment

Inferential patterns:

$$p \not\models p \vee q$$

$$p \wedge q \vDash p$$

Observation 1: Mirror image of truthmaker entailment

Observation 2: Telltale of containment logics

Two guiding themes:

Two guiding themes:

1. Points of contact between BSML and truthmaker semantics.

Two guiding themes:

1. Points of contact between BSML and truthmaker semantics.
2. BSML-style information semantics for containment logics.

Semantics for containment logics.

Containment and relevance

Containment logics obey the **the proscriptive principle**:

$$\varphi \vdash \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Strong form of **variable sharing**:

$$\varphi \vdash \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \cap \mathbf{At}(\psi) \neq \emptyset.$$

Signature invalidities:

1. $p \wedge \neg p \not\vdash q$ [like relevant logics]
2. $p \not\vdash q \vee \neg q$ [like relevant logics]
3. $p \not\vdash p \vee q$ [like BSML]

Containment and relevance

Containment logics obey the **the prescriptive principle**:

$$\varphi \vdash \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Strong form of **variable sharing**:

$$\varphi \vdash \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \cap \mathbf{At}(\psi) \neq \emptyset.$$

Signature invalidities:

1. $p \wedge \neg p \not\vdash q$ [like relevant logics]
2. $p \not\vdash q \vee \neg q$ [like relevant logics]
3. $p \not\vdash p \vee q$ [like BSML]

Containment and relevance

Containment logics obey the **the prescriptive principle**:

$$\varphi \vdash \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Strong form of **variable sharing**:

$$\varphi \vdash \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \cap \mathbf{At}(\psi) \neq \emptyset.$$

Signature invalidities:

1. $p \wedge \neg p \not\vdash q$ [like relevant logics]
2. $p \not\vdash q \vee \neg q$ [like relevant logics]
3. $p \not\vdash p \vee q$ [like BSML]

Containment and relevance

Containment logics obey the **the prescriptive principle**:

$$\varphi \vdash \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Strong form of **variable sharing**:

$$\varphi \vdash \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \cap \mathbf{At}(\psi) \neq \emptyset.$$

Signature invalidities:

1. $p \wedge \neg p \not\vdash q$ [like relevant logics]
2. $p \not\vdash q \vee \neg q$ [like relevant logics]
3. $p \not\vdash p \vee q$ [like BSML]

Angell's Analytic Entailment (AC)

One prominent containment logic is Angell's **analytic entailment AC**. AC is, as shown by Ferguson (2016) and Fine (2016), the **containment fragment** of FDE:

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \text{Lit}(\varphi) \supseteq \text{Lit}(\psi).$$

Of interest to us because:

- It is a containment logic.
- Fine (2016) provided a complete truthmaker semantics for AC.

Angell's Analytic Entailment (AC)

One prominent containment logic is Angell's **analytic entailment AC**. AC is, as shown by Ferguson (2016) and Fine (2016), the **containment fragment** of FDE:

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \text{Lit}(\varphi) \supseteq \text{Lit}(\psi).$$

Of interest to us because:

- It is a containment logic.
- Fine (2016) provided a complete truthmaker semantics for AC.

Angell's Analytic Entailment (AC)

One prominent containment logic is Angell's **analytic entailment AC**. AC is, as shown by Ferguson (2016) and Fine (2016), the **containment fragment** of FDE:

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi).$$

Of interest to us because:

- It is a containment logic.
- Fine (2016) provided a complete truthmaker semantics for AC.

Angell's Analytic Entailment (AC)

One prominent containment logic is Angell's **analytic entailment AC**. AC is, as shown by Ferguson (2016) and Fine (2016), the **containment fragment** of FDE:

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi).$$

Of interest to us because:

- It is a containment logic.
- Fine (2016) provided a complete truthmaker semantics for AC.

First goal: BSML-style semantics for AC.

BSML and classicality

Recall the BSML semantics: for $t \in \mathcal{P}(\{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\})$ we define

$t \vDash p$	iff	$\forall v \in t, v(p) = 1$
$t \dashv p$	iff	$\forall v \in t, v(p) = 0$
$t \vDash \neg\varphi$	iff	$t \dashv \varphi$
$t \dashv \neg\varphi$	iff	$t \vDash \varphi$
$t \vDash \varphi \vee \psi$	iff	$\exists t', t'' \text{ such that } t' \vDash \varphi; t'' \vDash \psi; \text{ and } t = t' \cup t''$
$t \dashv \varphi \vee \psi$	iff	$t \dashv \varphi \text{ and } t \dashv \psi$
$t \vDash \varphi \wedge \psi$	iff	$t \vDash \varphi \text{ and } t \vDash \psi$
$t \dashv \varphi \wedge \psi$	iff	$\exists t', t'' \text{ such that } t' \dashv \varphi; t'' \dashv \psi; \text{ and } t = t' \cup t''.$

BSML and classicality

Recall the BSML semantics: for $t \in \mathcal{P}(\{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\})$ we define

$t \vDash p$	iff	$\forall v \in t, v(p) = 1$
$t \dashv p$	iff	$\forall v \in t, v(p) = 0$
$t \vDash \neg\varphi$	iff	$t \dashv \varphi$
$t \dashv \neg\varphi$	iff	$t \vDash \varphi$
$t \vDash \varphi \vee \psi$	iff	$\exists t', t'' \text{ such that } t' \vDash \varphi; t'' \vDash \psi; \text{ and } t = t' \cup t''$
$t \dashv \varphi \vee \psi$	iff	$t \dashv \varphi \text{ and } t \dashv \psi$
$t \vDash \varphi \wedge \psi$	iff	$t \vDash \varphi \text{ and } t \vDash \psi$
$t \dashv \varphi \wedge \psi$	iff	$\exists t', t'' \text{ such that } t' \dashv \varphi; t'' \dashv \psi; \text{ and } t = t' \cup t''.$

Problem: $p \wedge \neg p \vDash q$.

Four-valued BSML semantics: for $t \in \mathcal{P}(\{v \mid v : \text{At} \rightarrow \mathcal{P}(\{0, 1\})\})$ we define

$t \models p$	iff	$\forall v \in t, v(p) \ni 1$
$t \dashv p$	iff	$\forall v \in t, v(p) \ni 0$
$t \models \neg\varphi$	iff	$t \dashv \varphi$
$t \dashv \neg\varphi$	iff	$t \models \varphi$
$t \models \varphi \vee \psi$	iff	$\exists t', t'' \text{ such that } t' \models \varphi; t'' \models \psi; \text{ and } t = t' \cup t''$
$t \dashv \varphi \vee \psi$	iff	$t \dashv \varphi \text{ and } t \dashv \psi$
$t \models \varphi \wedge \psi$	iff	$t \models \varphi \text{ and } t \models \psi$
$t \dashv \varphi \wedge \psi$	iff	$\exists t', t'' \text{ such that } t' \dashv \varphi; t'' \dashv \psi; \text{ and } t = t' \cup t''.$

Problem solved: $p \wedge \neg p \not\models q$. ✓

BSML-style semantics for AC

FDE semantics: Given $\mathcal{P}(X)$, $V^+, V^- : \mathbf{At} \rightarrow \mathcal{PP}(X)$ s.t.

- $V^+(p)$ is a non-empty ideal;
- $V^-(p)$ is a non-empty ideal,

we define for $t \in \mathcal{P}(X)$

$t \vDash p$	iff	$t \in V^+(p)$
$t \dashv p$	iff	$t \in V^-(p)$
$t \vDash \neg\varphi$	iff	$t \dashv \varphi$
$t \dashv \neg\varphi$	iff	$t \vDash \varphi$
$t \vDash \varphi \vee \psi$	iff	$\exists t', t'' \text{ such that } t' \vDash \varphi; t'' \vDash \psi; \text{ and } t = t' \cup t''$
$t \dashv \varphi \vee \psi$	iff	$t \dashv \varphi \text{ and } t \dashv \psi$
$t \vDash \varphi \wedge \psi$	iff	$t \vDash \varphi \text{ and } t \vDash \psi$
$t \dashv \varphi \wedge \psi$	iff	$\exists t', t'' \text{ such that } t' \dashv \varphi; t'' \dashv \psi; \text{ and } t = t' \cup t''.$

Theorem (FDE completeness)

$\varphi \vDash \psi$ if and only if $\varphi \vdash_{\text{FDE}} \psi$.

BSML-style semantics for AC

AC semantics: Given $\mathcal{P}(X), V^+, V^- : \mathbf{At} \rightarrow \mathcal{PP}(X)$ s.t.

- $V^+(p)$ is an ideal;
- $V^-(p)$ is an ideal,

we define for $t \in \mathcal{P}(X)$

$t \vDash p$	iff	$t \in V^+(p)$
$t \dashv p$	iff	$t \in V^-(p)$
$t \vDash \neg\varphi$	iff	$t \dashv \varphi$
$t \dashv \neg\varphi$	iff	$t \vDash \varphi$
$t \vDash \varphi \vee \psi$	iff	$\exists t', t'' \text{ such that } t' \vDash \varphi; t'' \vDash \psi; \text{ and } t = t' \cup t''$
$t \dashv \varphi \vee \psi$	iff	$t \dashv \varphi \text{ and } t \dashv \psi$
$t \vDash \varphi \wedge \psi$	iff	$t \vDash \varphi \text{ and } t \vDash \psi$
$t \dashv \varphi \wedge \psi$	iff	$\exists t', t'' \text{ such that } t' \dashv \varphi; t'' \dashv \psi; \text{ and } t = t' \cup t''.$

Theorem (AC completeness)

$\varphi \vDash \psi$ if and only if $\varphi \vdash_{AC} \psi$.

BSML-style semantics for AC

Four-val. **BSML*** semantics: Given $\mathcal{P}(X), V^+, V^- : \mathbf{At} \rightarrow \mathcal{PP}(X)$ s.t.

- $V^+(p)$ is an ideal but for the empty set;
- $V^-(p)$ is an ideal but for the empty set,

we define for $t \in \mathcal{P}(X)$

$t \vDash p$	iff	$t \in V^+(p)$
$t \dashv p$	iff	$t \in V^-(p)$
$t \vDash \neg\varphi$	iff	$t \dashv \varphi$
$t \dashv \neg\varphi$	iff	$t \vDash \varphi$
$t \vDash \varphi \vee \psi$	iff	$\exists t', t'' \text{ such that } t' \vDash \varphi; t'' \vDash \psi; \text{ and } t = t' \cup t''$
$t \dashv \varphi \vee \psi$	iff	$t \dashv \varphi \text{ and } t \dashv \psi$
$t \vDash \varphi \wedge \psi$	iff	$t \vDash \varphi \text{ and } t \vDash \psi$
$t \dashv \varphi \wedge \psi$	iff	$\exists t', t'' \text{ such that } t' \dashv \varphi; t'' \dashv \psi; \text{ and } t = t' \cup t''.$

Theorem (Four-val. BSML* completeness)

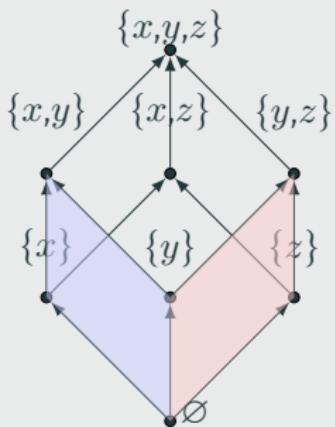
$\varphi \vDash \psi$ if and only if $\varphi \vDash_{BSML^*} \psi$.

FDE, AC, and BSML^{*}

FDE

Always: $\llbracket p \rrbracket = \mathcal{I} \ni \emptyset$.

Example:



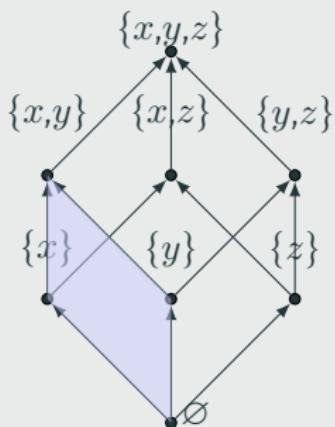
$$\llbracket p \rrbracket = \text{blue};$$

$$\llbracket \neg p \rrbracket = \text{red}.$$

AC

Possibly: $\llbracket p \rrbracket = \mathcal{I}$.

Example:



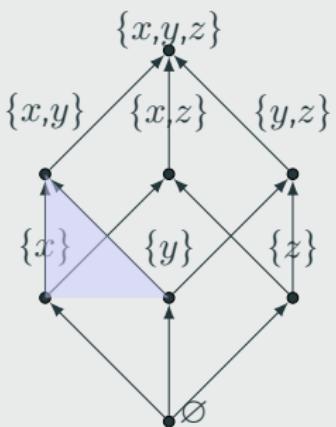
$$\llbracket p \rrbracket = \text{blue};$$

$$\llbracket \neg p \rrbracket = \text{red}.$$

BSML^{*}

Never: $\llbracket p \rrbracket = \mathcal{I} \neq \emptyset$.

Example:



$$\llbracket p \rrbracket = \text{blue};$$

$$\llbracket \neg p \rrbracket = \text{red}.$$

Follow-ups

We obtained a complete semantics for AC.

Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi),$$

Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi),$$

can we also give semantics for the logic characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi)?^1$$

¹Daniels (1990); Priest (2010).

Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi),$$

can we also give semantics for the logic characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi)?^1$$

Theorem

Require $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$. Then

$$\varphi \vDash \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

¹Daniels (1990); Priest (2010).

Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi),$$

can we also give semantics for the logic characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi)?^1$$

Theorem

Require $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$. Then

$$\varphi \models \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Proof. As before (note available).

¹Daniels (1990); Priest (2010).

Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi),$$

can we also give semantics for the logic characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi)?^1$$

Theorem

Require $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$. Then

$$\varphi \vDash \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Proof. As before (note available). [Proofs work for distr. lattices too.]

¹Daniels (1990); Priest (2010).

Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi),$$

can we also give semantics for the logic characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi)?^1$$

Theorem

Require $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$. Then

$$\varphi \vDash \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Proof. As before (note available). [Proofs work for distr. lattices too.]

Follow-ups:

¹Daniels (1990); Priest (2010).

Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi),$$

can we also give semantics for the logic characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi)?^1$$

Theorem

Require $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$. Then

$$\varphi \models \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Proof. As before (note available). [Proofs work for distr. lattices too.]

Follow-ups:

- What other containment logics arise by varying the frames (lattices, semilattices, distributive semilattices, etc.) or valuations?

¹Daniels (1990); Priest (2010).

Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi),$$

can we also give semantics for the logic characterized by

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi)?^1$$

Theorem

Require $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$. Then

$$\varphi \vDash \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi).$$

Proof. As before (note available). [Proofs work for distr. lattices too.]

Follow-ups:

- What other containment logics arise by varying the frames (lattices, semilattices, distributive semilattices, etc.) or valuations?
- For instance, can we obtain a complete semantics for Correia's (2016) logic of factual equivalence?

¹Daniels (1990); Priest (2010).

Recall

Recall

Inferential patterns:

$$p \not\models p \vee q$$

$$p \wedge q \vDash p$$

Observation 1: Mirror image of truthmaker entailment

Observation 2: Telltale of containment logics

And recall the two guiding themes:

1. Points of contact between BSML and truthmaker semantics.
2. BSML-style semantics for containment logics. ✓

Truthmakers and Inclusion.

Replete truthmaker entailment

Write $\varphi \Vdash \psi$ for replete truthmaker preservation.

Replete truthmaker entailment

Write $\varphi \Vdash \psi$ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)

$$\varphi \Vdash \psi \quad \text{iff} \quad \neg\psi \vDash \neg\varphi$$

Replete truthmaker entailment

Write $\varphi \Vdash \psi$ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)

$$\varphi \Vdash \psi \quad \text{iff} \quad \neg\psi \vDash \neg\varphi$$

Proof.

Replete truthmaker entailment

Write $\varphi \Vdash \psi$ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)

$$\varphi \Vdash \psi \quad \text{iff} \quad \neg\psi \vDash \neg\varphi$$

Proof.

$$\neg\psi \vDash \neg\varphi \quad \text{iff} \quad \neg\psi \vdash_{FDE} \neg\varphi \text{ and } \mathbf{Lit}(\neg\psi) \supseteq \mathbf{Lit}(\neg\varphi)$$

Replete truthmaker entailment

Write $\varphi \Vdash \psi$ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)

$$\varphi \Vdash \psi \quad \text{iff} \quad \neg\psi \vDash \neg\varphi$$

Proof.

$$\begin{aligned} \neg\psi \vDash \neg\varphi &\quad \text{iff} \quad \neg\psi \vdash_{FDE} \neg\varphi \text{ and } \mathbf{Lit}(\neg\psi) \supseteq \mathbf{Lit}(\neg\varphi) \\ &\quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \subseteq \mathbf{Lit}(\psi) \end{aligned}$$

Replete truthmaker entailment

Write $\varphi \Vdash \psi$ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)

$$\varphi \Vdash \psi \quad \text{iff} \quad \neg\psi \vDash \neg\varphi$$

Proof.

$$\begin{aligned} \neg\psi \vDash \neg\varphi &\quad \text{iff} \quad \neg\psi \vdash_{FDE} \neg\varphi \text{ and } \mathbf{Lit}(\neg\psi) \supseteq \mathbf{Lit}(\neg\varphi) \\ &\quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \subseteq \mathbf{Lit}(\psi) \\ &\quad \text{iff} \quad \varphi \Vdash \psi. \end{aligned}$$

□

Replete truthmaker entailment

Write $\varphi \Vdash \psi$ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)

$$\varphi \Vdash \psi \quad \text{iff} \quad \neg\psi \models \neg\varphi$$

Proof.

$$\begin{aligned} \neg\psi \models \neg\varphi &\quad \text{iff} \quad \neg\psi \vdash_{FDE} \neg\varphi \text{ and } \mathbf{Lit}(\neg\psi) \supseteq \mathbf{Lit}(\neg\varphi) \\ &\quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \subseteq \mathbf{Lit}(\psi) \\ &\quad \text{iff} \quad \varphi \Vdash \psi. \end{aligned}$$

□

Theorem²

Replete truthmaker entailment is the **inclusion fragment of FDE**; i.e.,

$$\varphi \Vdash \psi \quad \text{iff} \quad \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \subseteq \mathbf{Lit}(\psi).$$

²I imagine this is known, but I haven't found it stated.

A sample of corollaries

Corollary

$$\begin{array}{lll} \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) = \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \varphi \Vdash \psi. \end{array}$$

$$\begin{array}{lll} \varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \psi \Vdash \varphi. \end{array}$$

Corollary (when $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$)

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) = \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi.$$

$$\varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi.$$

Corollary

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \neg\psi \Vdash \neg\varphi.$$

Likewise, duals of Fine's (2016) valence/partial-truth accounts of AC characterize replete truthmaker entailment (as FDE is equivalently defined as reflection of falsity).

A sample of corollaries

Corollary

$$\begin{array}{lll} \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) = \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \varphi \Vdash \psi. \end{array}$$

$$\begin{array}{lll} \varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \psi \Vdash \varphi. \end{array}$$

Corollary (when $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$)

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) = \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi.$$

$$\varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi.$$

Corollary

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \neg\psi \Vdash \neg\varphi.$$

Likewise, duals of Fine's (2016) valence/partial-truth accounts of AC characterize replete truthmaker entailment (as FDE is equivalently defined as reflection of falsity).

A sample of corollaries

Corollary

$$\begin{array}{lll} \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) = \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \varphi \Vdash \psi. \end{array}$$

$$\begin{array}{lll} \varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \psi \Vdash \varphi. \end{array}$$

Corollary (when $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$)

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) = \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi.$$

$$\varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi.$$

Corollary

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \neg\psi \Vdash \neg\varphi.$$

Likewise, duals of Fine's (2016) valence/partial-truth accounts of AC characterize replete truthmaker entailment (as FDE is equivalently defined as reflection of falsity).

A sample of corollaries

Corollary

$$\begin{array}{lll} \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) = \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \varphi \Vdash \psi. \end{array}$$

$$\begin{array}{lll} \varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \psi \Vdash \varphi. \end{array}$$

Corollary (when $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$)

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) = \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi.$$

$$\varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi.$$

Corollary

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \neg\psi \Vdash \neg\varphi.$$

Likewise, duals of Fine's (2016) valence/partial-truth accounts of AC characterize replete truthmaker entailment (as FDE is equivalently defined as reflection of falsity).

A sample of corollaries

Corollary

$$\begin{array}{lll} \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) = \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \varphi \Vdash \psi. \end{array}$$

$$\begin{array}{lll} \varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \psi \Vdash \varphi. \end{array}$$

Corollary (when $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$)

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) = \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi.$$

$$\varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi.$$

Corollary

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \neg\psi \Vdash \neg\varphi.$$

Likewise, duals of Fine's (2016) valence/partial-truth accounts of AC characterize replete truthmaker entailment (as FDE is equivalently defined as reflection of falsity).

A sample of corollaries

Corollary

$$\begin{array}{lll} \varphi \vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) = \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \varphi \Vdash \psi. \end{array}$$

$$\begin{array}{lll} \varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{Lit}(\varphi) \supseteq \mathbf{Lit}(\psi) & \text{iff} & \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi \\ & \text{iff} & \neg\psi \Vdash \neg\varphi \text{ and } \psi \Vdash \varphi. \end{array}$$

Corollary (when $V^+(p) \neq \emptyset \Leftrightarrow V^-(p) \neq \emptyset$)

$$\varphi \vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) = \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\psi \vDash \neg\varphi.$$

$$\varphi \dashv\vdash_{FDE} \psi \text{ and } \mathbf{At}(\varphi) \supseteq \mathbf{At}(\psi) \quad \text{iff} \quad \varphi \vDash \psi \text{ and } \neg\varphi \vDash \neg\psi.$$

Corollary

$$\varphi \vdash_{AC} \psi \quad \text{iff} \quad \neg\psi \Vdash \neg\varphi.$$

Likewise, duals of Fine's (2016) valence/partial-truth accounts of AC characterize replete truthmaker entailment (as FDE is equivalently defined as reflection of falsity).

Before we proceed, two further remarks on
truthmakers and inclusion.

Maxim: *Exactify!*

Maxim: *Exactify!*

But what does it mean to exactify? When is a semantics *exact*?

Maxim: *Exactify!*

But what does it mean to exactify? When is a semantics *exact*?

Remark 1: On what it means for a semantics to be *exact*.

When is a semantics *exact*?

- Say that \models satisfies **the inclusion principle** if

$$\varphi \models \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi).$$

When is a semantics *exact*?

- Say that \models satisfies **the inclusion principle** if

$$\varphi \models \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi).$$

- By analogy to relevant logics, I wish to propose/entertain:

When is a semantics *exact*?

- Say that \models satisfies **the inclusion principle** if

$$\varphi \models \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi).$$

- By analogy to relevant logics, I wish to propose/entertain:

Criterion for exactness

A semantics is **exact**, or **wholly relevant**, only if its entailment relation satisfies the **inclusion principle**.

When is a semantics *exact*?

- Say that \models satisfies **the inclusion principle** if

$$\varphi \models \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi).$$

- By analogy to relevant logics, I wish to propose/entertain:

Criterion for exactness

A semantics is **exact**, or **wholly relevant**, only if its entailment relation satisfies the **inclusion principle**.

- Non-incl./incl./replete entailment all come out exact. ✓

When is a semantics *exact*?

- Say that \models satisfies **the inclusion principle** if

$$\varphi \models \psi \quad \text{implies} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi).$$

- By analogy to relevant logics, I wish to propose/entertain:

Criterion for exactness

A semantics is **exact**, or **wholly relevant**, only if its entailment relation satisfies the **inclusion principle**.

- Non-incl./incl./replete entailment all come out exact. ✓
- **Caveat 1:** $\varphi \wedge (\varphi \rightarrow \psi) \Vdash \psi$ only when $\mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi)$?
- **Caveat 2:** How about explosion and its dual? Perhaps inclusion *modulo* explosion and its dual?³

³The signature invalidities of ‘inclusion logics’ include explosion and its dual, but maybe exactness should only generalize the invalidity of simplification (think counterfactuals, modalities, etc.).

Remark 2: On replete entailment and wholly relevance.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \text{Lit}(A_i) \cap \text{Lit}(B_j) \neq \emptyset.$$

2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \text{Lit}(A_i) \cap \text{Lit}(B_j) \neq \emptyset.$$

2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

- 1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \mathbf{Lit}(A_i) \cap \mathbf{Lit}(B_j) \neq \emptyset.$$

- 2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

- 3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \mathbf{Lit}(A_i) \cap \mathbf{Lit}(B_j) \neq \emptyset.$$

2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \mathbf{Lit}(A_i) \cap \mathbf{Lit}(B_j) \neq \emptyset.$$

2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

- 1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \mathbf{Lit}(A_i) \cap \mathbf{Lit}(B_j) \neq \emptyset.$$

- 2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

- 3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \mathbf{Lit}(A_i) \cap \mathbf{Lit}(B_j) \neq \emptyset.$$

2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

Equivalently,

$$\varphi \vdash_{FDE} \psi \quad \text{iff} \quad \text{f.a. } A_i : \quad \text{f.a. } \textcolor{red}{B_j}, \text{ t.e. } \textcolor{blue}{l} \in \mathbf{Lit}(A_i) \text{ s.t. } l \in \mathbf{Lit}(B_j)$$

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \mathbf{Lit}(A_i) \cap \mathbf{Lit}(B_j) \neq \emptyset.$$

2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

Equivalently,

$$\begin{aligned} \varphi \vdash_{FDE} \psi &\quad \text{iff} \quad \text{f.a. } A_i : \quad \text{f.a. } \textcolor{red}{B_j}, \text{ t.e. } \textcolor{blue}{l} \in \mathbf{Lit}(A_i) \text{ s.t. } l \in \mathbf{Lit}(B_j) \\ \varphi \Vdash \psi &\quad \text{iff} \quad \text{f.a. } A_i : (\text{i}) \quad \text{f.a. } \textcolor{red}{B_j}, \text{ t.e. } \textcolor{blue}{l} \in \mathbf{Lit}(A_i) \text{ s.t. } l \in \mathbf{Lit}(B_j); \end{aligned}$$

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap's (1962) tautological entailments:

1) For A_i a conjunction of literals, and B_j a disjunction of literals, let

$$A_i \vdash_T B_j \quad \text{:iff} \quad \mathbf{Lit}(A_i) \cap \mathbf{Lit}(B_j) \neq \emptyset.$$

2) Lift it as follows:

$$\bigvee A_i \vdash_T \bigwedge B_j \quad \text{:iff} \quad \forall i, j : A_i \vdash_T B_j.$$

3) For arbitrary φ, ψ with normal forms $\varphi \equiv \bigvee A_i, \psi \equiv \bigwedge B_j$, define

$$\varphi \vdash_T \psi \quad \text{:iff} \quad \bigvee A_i \vdash_T \bigwedge B_j.$$

Fact. $\varphi \vdash_{FDE} \psi$ iff $\varphi \vdash_T \psi$.

Equivalently,

$$\begin{aligned} \varphi \vdash_{FDE} \psi &\quad \text{iff} \quad \text{f.a. } A_i : \quad \text{f.a. } \textcolor{red}{B_j}, \text{ t.e. } \textcolor{blue}{l} \in \mathbf{Lit}(A_i) \text{ s.t. } l \in \mathbf{Lit}(B_j) \\ \varphi \Vdash \psi &\quad \text{iff} \quad \text{f.a. } A_i : \begin{aligned} & \text{(i) f.a. } \textcolor{red}{B_j}, \text{ t.e. } \textcolor{blue}{l} \in \mathbf{Lit}(A_i) \text{ s.t. } l \in \mathbf{Lit}(B_j); \\ & \text{(ii) f.a. } \textcolor{blue}{l} \in \mathbf{Lit}(A_i), \text{ t.e. } \textcolor{red}{B_j} \text{ s.t. } l \in \mathbf{Lit}(B_j). \end{aligned} \end{aligned}$$

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be given a **double-barreled analysis**?
2. For instance, can (non-)inclusive entailment be captured by **stronger inclusion principles**?
3. Can (or has) a truthmaker semantics been given for

$$\varphi \vdash_{FDE} \psi \quad \text{and} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi) ?$$

4. Replete entailment admits BSML-style **contrapositive semantics** ($\varphi \Vdash \psi \Leftrightarrow \neg\psi \vDash \neg\varphi$). Do (non-)inclusive entailment also?
5. Which other truthmaker logics admit **A-B analyses**?⁴

⁴Obs: Failure of distributivity.

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be given a **double-barreled analysis**?
2. For instance, can (non-)inclusive entailment be captured by **stronger inclusion principles**?
3. Can (or has) a truthmaker semantics been given for

$$\varphi \vdash_{FDE} \psi \quad \text{and} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi) ?$$

4. Replete entailment admits BSML-style **contrapositive semantics** ($\varphi \Vdash \psi \Leftrightarrow \neg\psi \vDash \neg\varphi$). Do (non-)inclusive entailment also?
5. Which other truthmaker logics admit **A-B analyses**?⁴

⁴Obs: Failure of distributivity.

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be given a **double-barreled analysis**?
2. For instance, can (non-)inclusive entailment be captured by **stronger inclusion principles**?
3. Can (or has) a truthmaker semantics been given for

$$\varphi \vdash_{FDE} \psi \quad \text{and} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi) ?$$

4. Replete entailment admits BSML-style **contrapositive semantics** ($\varphi \Vdash \psi \Leftrightarrow \neg\psi \vDash \neg\varphi$). Do (non-)inclusive entailment also?
5. Which other truthmaker logics admit **A-B analyses**?⁴

⁴Obs: Failure of distributivity.

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be given a **double-barreled analysis**?
2. For instance, can (non-)inclusive entailment be captured by **stronger inclusion principles**?
3. Can (or has) a truthmaker semantics been given for

$$\varphi \vdash_{FDE} \psi \quad \text{and} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi) ?$$

4. Replete entailment admits BSML-style **contrapositive semantics** ($\varphi \Vdash \psi \Leftrightarrow \neg\psi \vDash \neg\varphi$). Do (non-)inclusive entailment also?
5. Which other truthmaker logics admit **A-B analyses**?⁴

⁴Obs: Failure of distributivity.

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be given a **double-barreled analysis**?
2. For instance, can (non-)inclusive entailment be captured by **stronger inclusion principles**?
3. Can (or has) a truthmaker semantics been given for

$$\varphi \vdash_{FDE} \psi \quad \text{and} \quad \mathbf{At}(\varphi) \subseteq \mathbf{At}(\psi) ?$$

4. Replete entailment admits BSML-style **contrapositive semantics** ($\varphi \Vdash \psi \Leftrightarrow \neg\psi \vDash \neg\varphi$). Do (non-)inclusive entailment also?
5. Which other truthmaker logics admit **A-B analyses**?⁴

⁴Obs: Failure of distributivity.

Translations.

Source logic: BSML with NE and \diamond

Fix a non-empty finite set of propositional variables At , and define:

$$\varphi ::= \perp \mid \text{NE} \mid p \mid \neg\varphi \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \diamond\varphi.$$

Definition

For $t \subseteq \{v \mid v : \text{At} \rightarrow \{0, 1\}\}$, we have

$t \models \text{NE}$	iff	$t \neq \emptyset$
$t \models \text{NE}$	iff	$t = \emptyset$
$t \models \diamond\varphi$	iff	$\exists s \subseteq t \text{ such that } \emptyset \neq s \models \varphi$
$t \models \diamond\varphi$	iff	$\forall s \subseteq t: s \models \varphi$
$t \models \perp$	iff	$t = \emptyset$
$t \models \perp$	always	

Source logic: BSML with NE and \blacklozenge

Fix a non-empty finite set of propositional variables \mathbf{At} , and define:

$$\varphi ::= \perp \mid \text{NE} \mid p \mid \neg\varphi \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \blacklozenge\varphi.$$

Definition

For $t \subseteq \{v \mid v : \mathbf{At} \rightarrow \{0, 1\}\}$, we have

$t \models \text{NE}$	iff	$t \neq \emptyset$
$t \models \text{NE}$	iff	$t = \emptyset$
$t \models \blacklozenge\varphi$	iff	$\exists s \subseteq t \text{ such that } \emptyset \neq s \models \varphi$
$t \models \blacklozenge\varphi$	iff	$\forall s \subseteq t: s \models \varphi$
$t \models \perp$	iff	$t = \emptyset$
$t \models \perp$	always	

Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

$$\varphi ::= \perp \mid p \mid \neg\varphi \mid \varphi \vee \varphi \mid \langle \sup \rangle \varphi \varphi \mid \langle s^* \rangle \varphi,$$

for $p \in \mathbf{At}_\pm := \{p_+, p_- \mid p \in \mathbf{At}\}$, interpreted over distributive semilattices (S, \vee) , where

$$s \Vdash \langle \sup \rangle \varphi \psi \quad \text{iff} \quad \exists t, u \text{ s.t. } t \Vdash \varphi, u \Vdash \psi, \text{ and } s = t \vee u.$$

$$s \Vdash \langle s^* \rangle \varphi \quad \text{iff} \quad \exists s_1, \dots, s_n \text{ s.t. each } s_i \Vdash \varphi \text{ and } s = s_1 \vee \dots \vee s_n.$$

Objective: Define translation pair \cdot^+, \cdot^- s.t. for all φ, ψ :

$$\varphi \Vdash \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

$$\varphi ::= \perp \mid p \mid \neg\varphi \mid \varphi \vee \varphi \mid \langle \sup \rangle \varphi \varphi \mid \langle s^* \rangle \varphi,$$

for $p \in \mathbf{At}_\pm := \{p_+, p_- \mid p \in \mathbf{At}\}$, interpreted over distributive semilattices (S, \vee) , where

$$s \Vdash \langle \sup \rangle \varphi \psi \quad \text{iff} \quad \exists t, u \text{ s.t. } t \Vdash \varphi, u \Vdash \psi, \text{ and } s = t \vee u.$$

$$s \Vdash \langle s^* \rangle \varphi \quad \text{iff} \quad \exists s_1, \dots, s_n \text{ s.t. each } s_i \Vdash \varphi \text{ and } s = s_1 \vee \dots \vee s_n.$$

Objective: Define translation pair \cdot^+, \cdot^- s.t. for all φ, ψ :

$$\varphi \Vdash \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

$$\varphi ::= \perp \mid p \mid \neg\varphi \mid \varphi \vee \varphi \mid \langle \sup \rangle \varphi \varphi \mid \langle s^* \rangle \varphi,$$

for $p \in \mathbf{At}_\pm := \{p_+, p_- \mid p \in \mathbf{At}\}$, interpreted over distributive semilattices (S, \vee) , where

$$s \Vdash \langle \sup \rangle \varphi \psi \quad \text{iff} \quad \exists t, u \text{ s.t. } t \Vdash \varphi, u \Vdash \psi, \text{ and } s = t \vee u.$$

$$s \Vdash \langle s^* \rangle \varphi \quad \text{iff} \quad \exists s_1, \dots, s_n \text{ s.t. each } s_i \Vdash \varphi \text{ and } s = s_1 \vee \dots \vee s_n.$$

Objective: Define translation pair \cdot^+, \cdot^- s.t. for all φ, ψ :

$$\varphi \Vdash \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

$$\varphi ::= \perp \mid p \mid \neg\varphi \mid \varphi \vee \varphi \mid \langle \sup \rangle \varphi \varphi \mid \langle s^* \rangle \varphi,$$

for $p \in \mathbf{At}_\pm := \{p_+, p_- \mid p \in \mathbf{At}\}$, interpreted over distributive semilattices (S, \vee) , where

$$s \Vdash \langle \sup \rangle \varphi \psi \quad \text{iff} \quad \exists t, u \text{ s.t. } t \Vdash \varphi, u \Vdash \psi, \text{ and } s = t \vee u.$$

$$s \Vdash \langle s^* \rangle \varphi \quad \text{iff} \quad \exists s_1, \dots, s_n \text{ s.t. each } s_i \Vdash \varphi \text{ and } s = s_1 \vee \dots \vee s_n.$$

Objective: Define translation pair \cdot^+, \cdot^- s.t. for all φ, ψ :

$$\varphi \models \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Translating BSLML

Set

$$\Gamma := \{\mathsf{H}(\mathsf{NE}^+ \vee \mathsf{NE}^-), \bigwedge_{p \in \mathbf{At}} \langle \sup \rangle p^+ p^-\},$$

and define \cdot^+ , \cdot^- via the double-recursive clauses:

$$\begin{array}{llll} \perp^+ & := & \mathsf{NE}^- & \perp^- & := & \top \\ \mathsf{NE}^+ & := & \bigwedge_{p \in \mathbf{At}} \neg(p^+ \wedge p^-) & \mathsf{NE}^- & := & \bigwedge_{p \in \mathbf{At}} (p^+ \wedge p^-) \\ p^+ & := & \mathsf{H}\langle s^* \rangle p_+ & p^- & := & \mathsf{H}\langle s^* \rangle p_- \\ (\neg\varphi)^+ & := & \varphi^- & (\neg\varphi)^- & := & \varphi^+ \\ (\varphi \vee \psi)^+ & := & \langle \sup \rangle \varphi^+ \psi^+ & (\varphi \vee \psi)^- & := & \varphi^- \wedge \psi^- \\ (\varphi \wedge \psi)^+ & := & \varphi^+ \wedge \psi^+ & (\varphi \wedge \psi)^- & := & \langle \sup \rangle \varphi^- \psi^- \\ (\blacklozenge \varphi)^+ & := & \mathsf{P}(\mathsf{NE}^+ \wedge \varphi^+) & (\blacklozenge \varphi)^- & := & \mathsf{H}\varphi^- \end{array}$$

Theorem

$$\varphi \models \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Translating BSLML

Set

$$\Gamma := \{\mathsf{H}(\mathsf{NE}^+ \vee \mathsf{NE}^-), \bigwedge_{p \in \mathbf{At}} \langle \sup \rangle p^+ p^-\},$$

and define \cdot^+ , \cdot^- via the double-recursive clauses:

$$\begin{array}{llll} \perp^+ & := & \mathsf{NE}^- & \perp^- & := & \top \\ \mathsf{NE}^+ & := & \bigwedge_{p \in \mathbf{At}} \neg(p^+ \wedge p^-) & \mathsf{NE}^- & := & \bigwedge_{p \in \mathbf{At}} (p^+ \wedge p^-) \\ p^+ & := & \mathsf{H}\langle s^* \rangle p_+ & p^- & := & \mathsf{H}\langle s^* \rangle p_- \\ (\neg\varphi)^+ & := & \varphi^- & (\neg\varphi)^- & := & \varphi^+ \\ (\varphi \vee \psi)^+ & := & \langle \sup \rangle \varphi^+ \psi^+ & (\varphi \vee \psi)^- & := & \varphi^- \wedge \psi^- \\ (\varphi \wedge \psi)^+ & := & \varphi^+ \wedge \psi^+ & (\varphi \wedge \psi)^- & := & \langle \sup \rangle \varphi^- \psi^- \\ (\blacklozenge \varphi)^+ & := & \mathsf{P}(\mathsf{NE}^+ \wedge \varphi^+) & (\blacklozenge \varphi)^- & := & \mathsf{H}\varphi^- \end{array}$$

Theorem

$$\varphi \models \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

BSML translation contra truthmaker translation

Translation clauses for BSML:

$$\begin{array}{lll} (p)^+ = \mathsf{H}\langle s^* \rangle p_+ & (p)^- = \mathsf{H}\langle s^* \rangle p_- \\ (\neg\varphi)^+ = \varphi^- & (\neg\varphi)^- = \varphi^+ \\ (\varphi \vee \psi)^+ = \langle \text{sup} \rangle \varphi^+ \psi^+ & (\varphi \vee \psi)^- = \varphi^- \wedge \psi^- \\ (\varphi \wedge \psi)^+ = \varphi^+ \wedge \psi^+ & (\varphi \wedge \psi)^- = \langle \text{sup} \rangle \varphi^- \psi^- . \end{array}$$

Translation clauses for truthmaker semantics:⁵

$$\begin{array}{lll} (p)^+ = p_+ & (p)^- = p_- \\ (\neg\varphi)^+ = \varphi^- & (\neg\varphi)^- = \varphi^+ \\ (\varphi \wedge \psi)^+ = \langle \text{sup} \rangle \varphi^+ \psi^+ & (\varphi \wedge \psi)^- = \varphi^- \vee \psi^- \\ (\varphi \vee \psi)^+ = \varphi^+ \vee \psi^+ & (\varphi \vee \psi)^- = \langle \text{sup} \rangle \varphi^- \psi^- . \end{array}$$

⁵Van Benthem (2019); see also SBK (2023).

BSML translation contra truthmaker translation

Translation clauses for BSML:

$$\begin{array}{lll} (p)^+ = \mathsf{H}\langle s^* \rangle p_+ & (p)^- = \mathsf{H}\langle s^* \rangle p_- \\ (\neg\varphi)^+ = \varphi^- & (\neg\varphi)^- = \varphi^+ \\ (\varphi \vee \psi)^+ = \langle \text{sup} \rangle \varphi^+ \psi^+ & (\varphi \vee \psi)^- = \varphi^- \wedge \psi^- \\ (\varphi \wedge \psi)^+ = \varphi^+ \wedge \psi^+ & (\varphi \wedge \psi)^- = \langle \text{sup} \rangle \varphi^- \psi^-. \end{array}$$

Translation clauses for truthmaker semantics:⁵

$$\begin{array}{lll} (p)^+ = p_+ & (p)^- = p_- \\ (\neg\varphi)^+ = \varphi^- & (\neg\varphi)^- = \varphi^+ \\ (\varphi \wedge \psi)^+ = \langle \text{sup} \rangle \varphi^+ \psi^+ & (\varphi \wedge \psi)^- = \varphi^- \vee \psi^- \\ (\varphi \vee \psi)^+ = \varphi^+ \vee \psi^+ & (\varphi \vee \psi)^- = \langle \text{sup} \rangle \varphi^- \psi^-. \end{array}$$

⁵Van Benthem (2019); see also SBK (2023).

Translating inquisitive logic

For the case of inquisitive logic, translate \vee , \rightarrow as follows:

$$(\varphi \vee \psi)^+ := \varphi^+ \vee \psi^+$$

$$(\varphi \rightarrow \psi)^+ := H(\varphi^+ \rightarrow \psi^+).$$

Theorem (translation of Inq)

$$\varphi \vDash \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Remark

The translation can be extended to other propositional team logics too, including all fragments of the grammar:

$$\begin{aligned} \varphi ::= & \perp \mid NE \mid p \mid \neg \alpha \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \diamond \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi \mid \sim \varphi \mid \\ & =(\vec{\alpha}; \vec{\alpha}) \mid \vec{\alpha} \perp_{\vec{\alpha}} \vec{\alpha} \mid \vec{\alpha} \subseteq \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \Upsilon \vec{\alpha}. \end{aligned}$$

Translating inquisitive logic

For the case of inquisitive logic, translate \vee , \rightarrow as follows:

$$(\varphi \vee \psi)^+ := \varphi^+ \vee \psi^+$$

$$(\varphi \rightarrow \psi)^+ := H(\varphi^+ \rightarrow \psi^+).$$

Theorem (translation of Inq)

$$\varphi \models \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Remark

The translation can be extended to other propositional team logics too, including all fragments of the grammar:

$$\begin{aligned} \varphi ::= & \perp \mid NE \mid p \mid \neg \alpha \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \lozenge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi \mid \sim \varphi \mid \\ & =(\vec{\alpha}; \vec{\alpha}) \mid \vec{\alpha} \perp_{\vec{\alpha}} \vec{\alpha} \mid \vec{\alpha} \subseteq \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \Upsilon \vec{\alpha}. \end{aligned}$$

Translating inquisitive logic

For the case of inquisitive logic, translate \vee , \rightarrow as follows:

$$(\varphi \vee \psi)^+ := \varphi^+ \vee \psi^+$$

$$(\varphi \rightarrow \psi)^+ := H(\varphi^+ \rightarrow \psi^+).$$

Theorem (translation of Inq)

$$\varphi \models \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Remark

The translation can be extended to other propositional team logics too, including all fragments of the grammar:

$$\begin{aligned} \varphi ::= & \perp \mid NE \mid p \mid \neg \alpha \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \diamond \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi \mid \sim \varphi \mid \\ & =(\vec{\alpha}; \vec{\alpha}) \mid \vec{\alpha} \perp_{\vec{\alpha}} \vec{\alpha} \mid \vec{\alpha} \subseteq \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \Upsilon \vec{\alpha}. \end{aligned}$$

Translating inquisitive logic

For the case of inquisitive logic, translate \vee , \rightarrow as follows:

$$(\varphi \vee \psi)^+ := \varphi^+ \vee \psi^+$$

$$(\varphi \rightarrow \psi)^+ := H(\varphi^+ \rightarrow \psi^+).$$

Theorem (translation of Inq)

$$\varphi \vDash \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Remark

The translation can be extended to other propositional team logics too, including all fragments of the grammar:

$$\begin{aligned} \varphi ::= & \perp \mid NE \mid p \mid \neg \alpha \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \diamond \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi \mid \sim \varphi \mid \\ & =(\vec{\alpha}; \vec{\alpha}) \mid \vec{\alpha} \perp_{\vec{\alpha}} \vec{\alpha} \mid \vec{\alpha} \subseteq \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \Upsilon \vec{\alpha}. \end{aligned}$$

Translating inquisitive logic

For the case of inquisitive logic, translate \veevee , \rightarrow as follows:

$$(\varphi \veevee \psi)^+ := \varphi^+ \vee \psi^+$$

$$(\varphi \rightarrow \psi)^+ := H(\varphi^+ \rightarrow \psi^+).$$

Theorem (translation of Inq)

$$\varphi \vDash \psi \quad \text{iff} \quad \Gamma, \varphi^+ \Vdash \psi^+.$$

Remark

The translation can be extended to other propositional team logics too, including all fragments of the grammar:

$$\begin{aligned} \varphi ::= & \perp \mid NE \mid p \mid \neg \alpha \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \blacklozenge \varphi \mid \varphi \veevee \varphi \mid \varphi \rightarrow \varphi \mid \sim \varphi \mid \\ & =(\vec{\alpha}; \vec{\alpha}) \mid \vec{\alpha} \perp_{\vec{\alpha}} \vec{\alpha} \mid \vec{\alpha} \subseteq \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \mid \vec{\alpha} \Upsilon \vec{\alpha}. \end{aligned}$$

Thank you!

References i

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for $\{\neg, \wedge, \vee\}$ gives us **classical logic**.
- Fact 2: In classical logic, $\{\neg, \wedge, \vee\}$ is famously **functionally complete**: all other connectives are definable by these.
- Fact 3: In team semantics, $\{\neg, \wedge, \vee\}$ can only capture a fraction of the expressible connectives. For example, \vee is not definable using $\{\neg, \wedge, \vee\}$.
- Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for **considering new connectives!**

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for $\{\neg, \wedge, \vee\}$ gives us classical logic.
- Fact 2: In classical logic, $\{\neg, \wedge, \vee\}$ is famously functionally complete: all other connectives are definable by these.
- Fact 3: In team semantics, $\{\neg, \wedge, \vee\}$ can only capture a fraction of the expressible connectives. For example, \vee is not definable using $\{\neg, \wedge, \vee\}$.
- Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for considering new connectives!

On connectives:

- Fact 1: Team semantics for $\{\neg, \wedge, \vee\}$ gives us **classical logic**.
- Fact 2: In classical logic, $\{\neg, \wedge, \vee\}$ is famously **functionally complete**: all other connectives are definable by these.
- Fact 3: In team semantics, $\{\neg, \wedge, \vee\}$ can only capture a fraction of the expressible connectives. For example, \vee is not definable using $\{\neg, \wedge, \vee\}$.
- Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

*Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for **considering new connectives!***

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for $\{\neg, \wedge, \vee\}$ gives us **classical logic**.
- Fact 2: In classical logic, $\{\neg, \wedge, \vee\}$ is famously **functionally complete**: all other connectives are definable by these.
- Fact 3: In team semantics, $\{\neg, \wedge, \vee\}$ can only capture a fraction of the expressible connectives. For example, \vee is not definable using $\{\neg, \wedge, \vee\}$.
- Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

*Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for **considering new connectives!***

On connectives:

- Fact 1: Team semantics for $\{\neg, \wedge, \vee\}$ gives us **classical logic**.
- Fact 2: In classical logic, $\{\neg, \wedge, \vee\}$ is famously **functionally complete**: all other connectives are definable by these.
- Fact 3: In team semantics, $\{\neg, \wedge, \vee\}$ can only capture a fraction of the expressible connectives. For example, \vee is not definable using $\{\neg, \wedge, \vee\}$.
- Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

*Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for **considering new connectives!***

On connectives:

- Fact 1: Team semantics for $\{\neg, \wedge, \vee\}$ gives us **classical logic**.
- Fact 2: In classical logic, $\{\neg, \wedge, \vee\}$ is famously **functionally complete**: all other connectives are definable by these.
- Fact 3: In team semantics, $\{\neg, \wedge, \vee\}$ can only capture a fraction of the expressible connectives. For example, \vee is not definable using $\{\neg, \wedge, \vee\}$.
- Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for **considering new connectives!**

On connectives:

- Fact 1: Team semantics for $\{\neg, \wedge, \vee\}$ gives us **classical logic**.
- Fact 2: In classical logic, $\{\neg, \wedge, \vee\}$ is famously **functionally complete**: all other connectives are definable by these.
- Fact 3: In team semantics, $\{\neg, \wedge, \vee\}$ can only capture a fraction of the expressible connectives. For example, \vee is not definable using $\{\neg, \wedge, \vee\}$.
- Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for **considering new connectives!**

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, propositions are sets of teams. *Caveat:* The standard terminology is not ‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what different kinds of propositions/meanings there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, propositions are sets of teams. *Caveat:* The standard terminology is not ‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what different kinds of propositions/meanings there are! For instance, assertions contra questions. (Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* **Proposition = a set of conditions.**
- In team semantics, conditions are teams.
- So, **propositions are sets of teams.** Caveat: The standard terminology is not ‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what **different kinds of propositions/meanings** there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* **Proposition = a set of conditions.**
- In team semantics, conditions are teams.
- So, **propositions are sets of teams.** Caveat: The standard terminology is not ‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what **different kinds of propositions/meanings** there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* **Proposition = a set of conditions.**
- In team semantics, conditions are teams.
- So, **propositions are sets of teams.** Caveat: The standard terminology is not ‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what **different kinds of propositions/meanings** there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

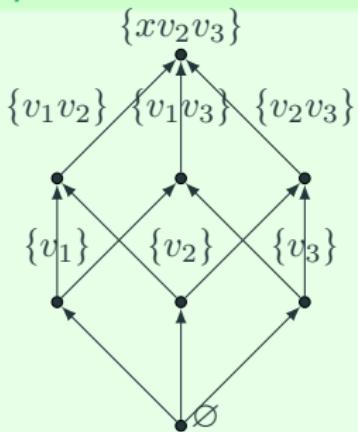
- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* **Proposition = a set of conditions.**
- In team semantics, conditions are teams.
- So, **propositions are sets of teams.** **Caveat:** The standard terminology is not ‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what **different kinds of propositions/meanings** there are! For instance, assertions contra questions. (Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, **propositions are sets of teams**. **Caveat:** The standard terminology is not ‘propositions’ but ‘properties’.

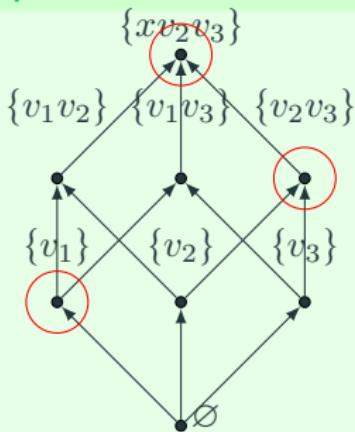
Example



(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* **Proposition = a set of conditions.**
- In team semantics, conditions are teams.
- So, **propositions are sets of teams.** **Caveat:** The standard terminology is not ‘propositions’ but ‘properties’.

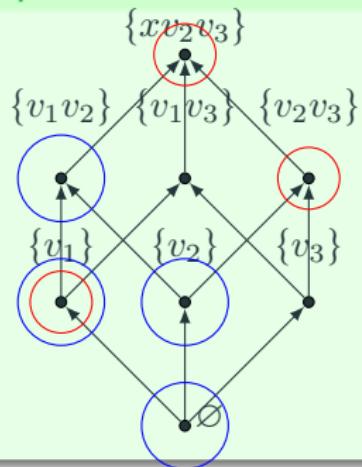
Example



(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, **propositions are sets of teams**. **Caveat:** The standard terminology is not ‘propositions’ but ‘properties’.

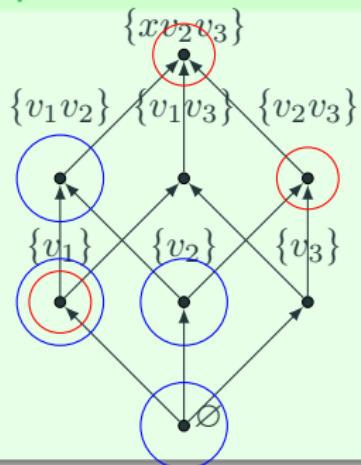
Example



(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, **propositions are sets of teams**. **Caveat:** The standard terminology is not ‘propositions’ but ‘properties’.

Example

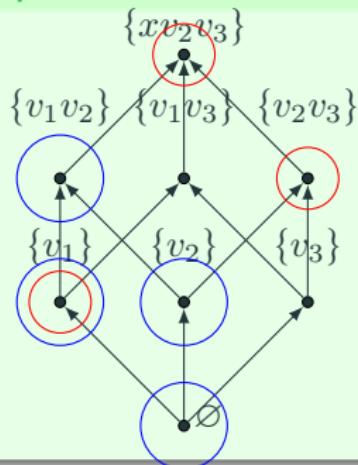


Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what **different kinds of propositions/meanings** there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, propositions are sets of teams. **Caveat:** The standard terminology is not ‘propositions’ but ‘properties’.

Example

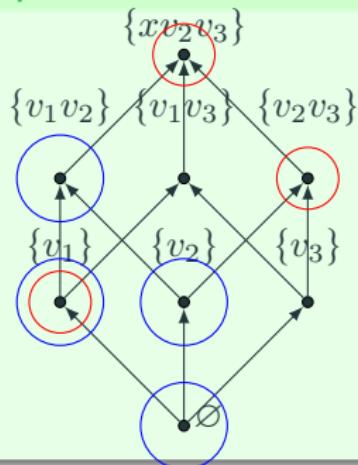


Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what different kinds of propositions/meanings there are! For instance, assertions contra questions. (Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, propositions are sets of teams. **Caveat:** The standard terminology is not ‘propositions’ but ‘properties’.

Example

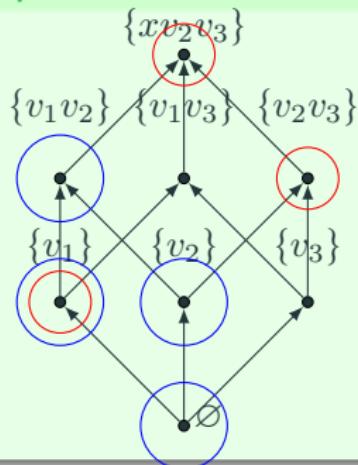


Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what **different kinds of propositions/meanings** there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, propositions are sets of teams. **Caveat:** The standard terminology is not ‘propositions’ but ‘properties’.

Example



Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what **different kinds of propositions/meanings** there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)

Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for **considering new notions of propositionhood!**

Definition (some restrictions on propositionhood)

ϕ is *downward closed*: $[s \models \phi \text{ and } t \subseteq s] \implies t \models \phi$

ϕ is *union closed*: $[s \models \phi \text{ f.a. } s \in S \neq \emptyset] \implies \bigcup S \models \phi$

ϕ has the *empty team property*: $\emptyset \models \phi$

ϕ is *flat*: $s \models \phi \iff \{v\} \models \phi \text{ for all } v \in s$

ϕ is *convex*: $[s \models \phi, u \models \phi, s \subseteq t \subseteq u] \implies t \models \phi$

Convexity generalizes downward closure:

downward closed \implies convex

Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for *considering new notions of propositionhood!*

Definition (some restrictions on propositionhood)

ϕ is *downward closed*: $[s \models \phi \text{ and } t \subseteq s] \implies t \models \phi$

ϕ is *union closed*: $[s \models \phi \text{ f.a. } s \in S \neq \emptyset] \implies \bigcup S \models \phi$

ϕ has the *empty team property*: $\emptyset \models \phi$

ϕ is *flat*: $s \models \phi \iff \{v\} \models \phi \text{ for all } v \in s$

ϕ is *convex*: $[s \models \phi, u \models \phi, s \subseteq t \subseteq u] \implies t \models \phi$

Convexity generalizes downward closure:

downward closed \implies convex

Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for *considering new notions of propositionhood!*

Definition (some restrictions on propositionhood)

ϕ is *downward closed*: $[s \models \phi \text{ and } t \subseteq s] \implies t \models \phi$

ϕ is *union closed*: $[s \models \phi \text{ f.a. } s \in S \neq \emptyset] \implies \bigcup S \models \phi$

ϕ has the *empty team property*: $\emptyset \models \phi$

ϕ is *flat*: $s \models \phi \iff \{v\} \models \phi \text{ for all } v \in s$

ϕ is *convex*: $[s \models \phi, u \models \phi, s \subseteq t \subseteq u] \implies t \models \phi$

Convexity generalizes downward closure:

downward closed \implies convex

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e., classical assertions are flat]
- Formulas with \vee need not be union closed [i.e., questions are not union closed]
- Consider the *epistemic might* operator \blacklozenge , defined as

$$s \models \blacklozenge\phi \iff \exists t \subseteq s : t \neq \emptyset \ \& \ t \models \phi.$$

Formulas with \blacklozenge are not downward closed [i.e., epistemic uncertainty is not persistent]

Theorem (Anttila and SBK (under review))

BSML is expressively complete for convex and union-closed properties.

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e., classical assertions are flat]
- Formulas with \vee need not be union closed [i.e., questions are not union closed]
- Consider the *epistemic might* operator \blacklozenge , defined as

$$s \models \blacklozenge\phi \iff \exists t \subseteq s : t \neq \emptyset \ \& \ t \models \phi.$$

Formulas with \blacklozenge are not downward closed [i.e., epistemic uncertainty is not persistent]

Theorem (Anttila and SBK (under review))

BSML is expressively complete for convex and union-closed properties.

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e., classical assertions are flat]
- Formulas with \vee need not be union closed [i.e., questions are not union closed]
- Consider the *epistemic might* operator \lozenge , defined as

$$s \models \lozenge\phi \iff \exists t \subseteq s : t \neq \emptyset \ \& \ t \models \phi.$$

Formulas with \lozenge are not downward closed [i.e., epistemic uncertainty is not persistent]

Theorem (Anttila and SBK (under review))

BSML is expressively complete for convex and union-closed properties.

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e., classical assertions are flat]
- Formulas with \vee need not be union closed [i.e., questions are not union closed]
- Consider the *epistemic might* operator \blacklozenge , defined as

$$s \models \blacklozenge\phi \iff \exists t \subseteq s : t \neq \emptyset \ \& \ t \models \phi.$$

Formulas with \blacklozenge are not downward closed [i.e., epistemic uncertainty is not persistent]

Theorem (Anttila and SBK (under review))

BSML is expressively complete for convex and union-closed properties.

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e., classical assertions are flat]
- Formulas with \vee need not be union closed [i.e., questions are not union closed]
- Consider the *epistemic might* operator \blacklozenge , defined as

$$s \models \blacklozenge\phi \iff \exists t \subseteq s : t \neq \emptyset \ \& \ t \models \phi.$$

Formulas with \blacklozenge are not downward closed [i.e., epistemic uncertainty is not persistent]

Theorem (Anttila and SBK (under review))

BSML is expressively complete for convex and union-closed properties.