Truthmakers and Information States

Inclusion, Containment, Duality

Sg¢ren Brinck Knudstorp
ILLC and Philosophy, University of Amsterdam

Prague, November 18, 2025

Workshop on Truthmakers, Possibilities, and Information States

Plan for the talk

I'll discuss a cluster of observations on points of contact between
truthmaker and information semantics.

Plan for the talk

I'll discuss a cluster of observations on points of contact between
truthmaker and information semantics. These fall under three
connected themes:

- Information states (& la BSML) and Containment.
- Truthmakers and Inclusion.

- Translations.

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g,, CPC), formulas ¢ are evaluated at single
valuations v : At — {0,1}, v = .

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g,, CPC), formulas ¢ are evaluated at single
valuations v : At — {0,1}, v = .

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t < {v | v : At — {0,1}}, t = .

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g.,, CPC), formulas ¢ are evaluated at
v: At — {0,1},

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t < {v | v : At — {0,1}}, t = .

Definition (Semantic clauses)
Fort < {v|v: At — {0,1}}, we define

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g.,, CPC), formulas ¢ are evaluated at
v: At — {0,1},

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t < {v | v : At — {0,1}}, t = .
Definition (Semantic clauses)

Fort < {v|v: At — {0,1}}, we define

tEp iff VYvetv(p) =

1
t=p iff Yvetv(p) =0

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g.,, CPC), formulas ¢ are evaluated at
v: At — {0,1},

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t < {v | v : At — {0,1}}, t = .

Definition (Semantic clauses)
Fort < {v|v: At — {0,1}}, we define

tEp iff Yvetolp) =1
t=p iff Yvetv(p) =0
tE - iff t9¢
t= - iff tEop

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g., CPC), formulas ¢ are evaluated at
v: At — {0,1},

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t < {v | v : At — {0,1}}, t = .

Definition (Semantic clauses)
Fort < {v|v: At — {0,1}}, we define

tEp iff Yvetolp) =1
t=p iff Yvetv(p) =0
tE - iff t9¢
t= - iff tEop

tEpvey iff 3¢, ¢ suchthatt = ¢t E4; andt =t Ut

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g., CPC), formulas ¢ are evaluated at
v: At — {0,1},

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t < {v | v : At — {0,1}}, t = .

Definition (Semantic clauses)
Fort < {v|v: At — {0,1}}, we define

tEp iff Yvetolp) =1
t=p iff Yvetv(p) =0
tE - iff t9¢
t= - iff tEop

tEpvey iff 3¢, ¢ suchthatt = ¢t E4; andt =t Ut
tdpvey if tg4pandtgy
tEpay iff tEpandtEy

Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g., CPC), formulas ¢ are evaluated at
v: At — {0,1},

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t < {v | v : At — {0,1}}, t = .

Definition (Semantic clauses)
Fort < {v|v: At — {0,1}}, we define

tEp iff Yvetolp) =1
t=p iff Yvetv(p) =0
tE - iff t9¢
t= - iff tEop

teevey iff 3t,t"suchthatt = ¢;t" =; andt =t ut”
tdovy iff tdpandt=y
tEpay iff tEpandtEy
t=onae iff 3t " suchthatt' = ¢;t” H; andt =t ut”.

o 2

Inferential patterns:

Inferential patterns:

PEDPVQ
PAQED

Inferential patterns:

PEDPVQ
PAQED

Observation 1: Mirror image of truthmaker entailment

Inferential patterns:
p¥EDPVY
PAQED
Observation 1: Mirror image of truthmaker entailment
Observation 2: Telltale of containment logics

Two guiding themes:

Two guiding themes:

1. Points of contact between BSML and truthmaker
semantics.

Two guiding themes:

1. Points of contact between BSML and truthmaker
semantics.

2. BSML-style information semantics for containment
logics.

Semantics for containment logics.

Containment and relevance

Containment and relevance

Containment logics obey the the proscriptive principle:

e implies At(p) 2 At(e).

Containment and relevance

Containment logics obey the the proscriptive principle:
e implies At(p) 2 At(e).
Strong form of variable sharing:

oY implies At(p) N At(y) # 2.

Containment and relevance

Containment logics obey the the proscriptive principle:
e implies At(p) 2 At(e).
Strong form of variable sharing:
oY implies At(p) N At(y) # @.
Signature invalidities:

T.pA—pHq [like relevant logics]
2. pitqgv —q [like relevant logics]
3.p¥pvy [like BSML]

Angell’s Analytic Entailment (AC)

One prominent containment logic is Angell's analytic entailment AC.

Angell’s Analytic Entailment (AC)

One prominent containment logic is Angell's analytic entailment AC.
AC is, as shown by Ferguson (2016) and Fine (2016), the containment
fragment of FDE

Angell’s Analytic Entailment (AC)

One prominent containment logic is Angell's analytic entailment AC.
AC is, as shown by Ferguson (2016) and Fine (2016), the containment
fragment of FDE:

Y hac iff ¢rrpe ¥ and Lit(y) 2 Lit(y).

Angell’s Analytic Entailment (AC)

One prominent containment logic is Angell's analytic entailment AC.
AC is, as shown by Ferguson (2016) and Fine (2016), the containment
fragment of FDE:

Y hac iff ¢rrpe ¥ and Lit(y) 2 Lit(y).
Of interest to us because:

- Itis a containment logic.
- Fine (2016) provided a complete truthmaker semantics for AC.

First goal: BSML-style semantics for AC.

BSML and classicality

Recall the BSML semantics: fort € P({v | v: At — {0,1}} we define

tEp iff Yveto(p) =1
t=p iff VYveto(p) =0
tE —p iff t90
t=—p iff t=p

tEpvey iff 3¢, ¢ suchthatt' = gt E; andt =t ut”
t=ovey iff t=apandi=y
tepnaty Iff tEpandtEy
t=onaty iff 3t ¢ suchthatt o ¢;t" 9; andt =t Ut

BSML and classicality

Recall the BSML semantics: fort € P({v | v: At — {0,1}} we define

tEp iff Yveto(p) =1
t=p iff VYveto(p) =0
tE —p iff t90
t=—p iff t=p

tEpvey iff 3¢, ¢ suchthatt' = gt E; andt =t ut”
t=ovey iff t=apandi=y
tepnaty Iff tEpandtEy
t=onaty iff 3t ¢ suchthatt o ¢;t" 9; andt =t Ut

Problem: p A —p E q.

BSML and classicality

BSML semantics: fort € P({v | v : At — P({0,1})} we

define
tE=p iff Vveto(p) 1
t=p iff VYvetv(p) 30
teE —p iff t=¢
t= - iff tE=op

tepvey iff 3¢, suchthatt = ¢;t" = andt =t ut”
tdpvy if tdpandtdy
tepay Iff tEpandteEy
tadponay iff FU, " suchthatt' g ¢;t" d¢; andt =t ut’.

Problem solved: p A —p ¥ q. v/

BSML-style semantics for AC

FDE semantics: Given P(X), VT, V™ : At - PP(X) st

- V*(p) is a non-empty ideal;
- V= (p) is a non-empty ideal,

we define for t € P(X)

tEp
t=p
tE —p
t=—p
t=epvy
tdpvy
t=Eo Ay
tdony

iff
iff
iff

teV*(p)

teV=(p)

t=p

tEp

3t',t" suchthatt' = p;t" =; andt =t U t”
tdpandt =

tEpandtEy

3t',t" such thatt' 5 p;t" =4 ¢; andt =t U t”.

Theorem (FDE completeness)
wEyifandonly if o FrpE . J ;

BSML-style semantics for AC

AC semantics: Given P(X), VT, V= : At - PP(X) st

- V*(p)is an ideal;
- V= (p) is an ideal,

we define for t € P(X)

tEp
t=p
tE —p
t=—p
t=epvy
tdpvy
t=Eo Ay
tdony

iff
iff
iff

teV*(p)

teV=(p)

t=p

tEp

3t',t" suchthatt' = p;t" =; andt =t U t”
tdpandt =

tEpandtEy

3t',t" such thatt' 5 p;t" =4 ¢; andt =t U t”.

Theorem (AC completeness)
o B ifand only if o = ac . J .

BSML-style semantics for AC

Four-val. BSML* semantics: Given P(X), VT, V™~ : At - PP(X) st

- V*(p) is an ideal but for the empty set;
- V= (p) is an ideal but for the empty set,

we define for t € P(X)

tEp
t=p
tE —p
t=—p
t=epvy
tdpvy
t=Eo Ay
tdony

iff
iff
iff

teV*(p)

teV=(p)

t=p

tEp

3t',t" suchthatt' = p;t" =; andt =t U t”
tdpandt =

tEpandtEy

3t',t" such thatt' 5 p;t" =4 ¢; andt =t U t”.

Theorem (Four-val. BSML* completeness)
¢ = if and only if ¢ Epsuir . J 6

FDE, AC, and BSML*

FDE AC BSML*
Always: [p] =7 > 2. Possibly: [p] = Z. Never: [p] =Z 3 @.
Example: Example: Example:

{zy

. Mr&z}

[p] = blue;
[=r] =

{2,y,7}
{xww}

[p] = blue;

[~p] =red. }

We obtained a complete semantics for AC.

We obtained a complete semantics for AC.

Question: As AC is characterized by

¢ FrpE ¥ and Lit(e) 2 Lit(y),

We obtained a complete semantics for AC.
Question: As AC is characterized by
¢ FrpE % and Lit(p) 2 Lit(¥),
can we also give semantics for the logic characterized by

¢ Frpe ¥ and At(p) 2 At(e)?"

TDaniels (1990); Priest (2010).

We obtained a complete semantics for AC.
Question: As AC is characterized by
¢ FrpE % and Lit(p) 2 Lit(¥),
can we also give semantics for the logic characterized by

¢ FrpE ¥ and At(p) 2 At(y)?’
Theorem

Require VT (p) # @ = V™ (p) # @. Then

ey Iff @lrpeYand At(p) 2 At(y).

TDaniels (1990); Priest (2010).

We obtained a complete semantics for AC.
Question: As AC is characterized by
¢ FrpE % and Lit(p) 2 Lit(¥),
can we also give semantics for the logic characterized by
¢ Frpe ¥ and At(p) 2 At(e)?"
Theorem
Require VT (p) # @ = V™ (p) # @. Then

ey Iff @lrpeYand At(p) 2 At(y).

Proof. As before (note available).

TDaniels (1990); Priest (2010).

We obtained a complete semantics for AC.
Question: As AC is characterized by
¢ FrpE % and Lit(p) 2 Lit(¥),
can we also give semantics for the logic characterized by
¢ Frpe ¥ and At(p) 2 At(e)?"
Theorem
Require VT (p) # @ = V™ (p) # @. Then

ey Iff @lrpeYand At(p) 2 At(y).

Proof. As before (note available). [Proofs work for distr. lattices too.]

TDaniels (1990); Priest (2010).

We obtained a complete semantics for AC.
Question: As AC is characterized by
¢ FrpE % and Lit(p) 2 Lit(¥),
can we also give semantics for the logic characterized by
¢ Frpe ¥ and At(p) 2 At(e)?"
Theorem

Require VT (p) # @ = V™ (p) # @. Then

ey Iff @lrpeYand At(p) 2 At(y).

Proof. As before (note available). [Proofs work for distr. lattices too.]
Follow-ups:

TDaniels (1990); Priest (2010).

We obtained a complete semantics for AC.
Question: As AC is characterized by
¢ FrpE % and Lit(p) 2 Lit(¥),
can we also give semantics for the logic characterized by
¢ Frpe ¥ and At(p) 2 At(e)?"
Theorem
Require VT (p) # @ = V™ (p) # @. Then

ey Iff @lrpeYand At(p) 2 At(y).

Proof. As before (note available). [Proofs work for distr. lattices too.]
Follow-ups:
- What other containment logics arise by varying the frames (lattices,
semilattices, distributive semilattices, etc.) or valuations?

TDaniels (1990); Priest (2010).

We obtained a complete semantics for AC.
Question: As AC is characterized by
¢ FrpE % and Lit(p) 2 Lit(¥),
can we also give semantics for the logic characterized by
¢ Frpe ¥ and At(p) 2 At(e)?"
Theorem
Require VT (p) # @ = V™ (p) # @. Then

ey Iff @lrpeYand At(p) 2 At(y).

Proof. As before (note available). [Proofs work for distr. lattices too.]
Follow-ups:
- What other containment logics arise by varying the frames (lattices,
semilattices, distributive semilattices, etc.) or valuations?
- For instance, can we obtain a complete semantics for Correia’s
(2016) logic of factual equivalence?

TDaniels (1990); Priest (2010).

Recall

Recall
Inferential patterns:

p¥EPVY
PAGED
Observation 1: Mirror image of truthmaker entailment
Observation 2: Telltale of containment logics

And recall the two guiding themes:

1. Points of contact between BSML and truthmaker
semantics.

2. BSML-style semantics for containment logics.

Truthmakers and Inclusion.

Replete truthmaker entailment

Write ¢ I ¢ for replete truthmaker preservation.

Replete truthmaker entailment

Write ¢ I ¢ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment) }

ol iff —YE-p

Replete truthmaker entailment

Write ¢ I ¢ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment) }

ol iff —YE-p

Proof.

Replete truthmaker entailment

Write ¢ I ¢ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)
ey iff e }

Proof.

—YE—p iff =9 Fppe —pandLit(—y) 2 Lit(—¢)

Replete truthmaker entailment

Write ¢ I ¢ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)
ey iff e }

Proof.

—pE—p iff —¢rpE —¢ and Lit(—y) 2 Lit(—y)
iff ¢ rpe v and Lit(p) Lit(y)

Replete truthmaker entailment

Write ¢ I ¢ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)
ey iff e }

Proof.

—pE—p iff —¢rpr —¢ and Lit(—y) 2 Lit(—y)
iff ¢ Frpe v and Lit(p) < Lit(y)
iff © - . 0

Replete truthmaker entailment

Write ¢ I ¢ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)
oI iff - E - J

Proof.
Y E—p Iff =9 Fppe —pandLit(—1y) 2 Lit(—¢)
iff ¢ +Frpe ¥ and Lit(p) < Lit(y)
iff ©lI-. O

Theorem?

Replete truthmaker entailment is the inclusion fragment of FDE; i.e.,

YI- iff ¢ bkrpr ¥ and Lit(y) € Lit(y).

2] imagine this is known, but | haven't found it stated.

A sample of corollaries

A sample of corollaries

Corollary

¢ Frpe ¥ and Lit(e) = Lit(y) iff pEYand ¢ E —p
iff —¥IF—pandpl- .

A sample of corollaries

Corollary
¢ Frpe ¥ and Lit(e) = Lit(y) iff pEYand ¢ E —p
iff —¥IF—pandpl- .
¢ A-rpe ¥ and Lit(y) 2 Lit(y) iff pEYand —p = —1
iff =Y IF—pandy - .

A sample of corollaries

Corollary
¢ Frpe ¥ and Lit(e) = Lit(y) iff pEYand ¢ E —p
iff —¥IF—pandpl- .

¢ A-rpe ¥ and Lit(y) 2 Lit(y) iff pEYand —p = —1
iff =Y IF—pandy - .

Corollary (when V*(p) # @ < V—(p) # @)
¢ Frpe ¥ and At(p) = At(y) if pEYand ~¢ E —p.

¢ 4+rpE ¥ and At(ﬁp) QAt(’(/J) iff pEYand —pkE .

A sample of corollaries

Corollary
¢ Frpe ¥ and Lit(e) = Lit(y) iff pEYand ¢ E —p
iff —¥IF—pandpl- .

¢ A-rpe ¥ and Lit(y) 2 Lit(y) iff pEYand —p = —1
iff =Y IF—pandy - .

Corollary (when V*(p) # @ < V—(p) # @)
¢ Frpe ¥ and At(p) = At(y) if pEYand ~¢ E —p.

¢ 4+rpE ¥ and At(ﬁp) QAt(’(/J) iff pEYand —pkE .

Corollary

pracy it Y e)

A sample of corollaries

Corollary
¢ Frpe ¥ and Lit(e) = Lit(y) iff pEYand ¢ E —p
iff —¥IF—pandpl- .
¢ A-rpe ¥ and Lit(y) 2 Lit(y) iff pEYand —p = —1
iff =Y IF—pandy - .

Corollary (when V*(p) # @ < V—(p) # @)
¢ rpe P and At(p) = At(y) iff pEyYand —yY E —p.
¢ 4rpr ¥ and At(p) 2 At(y) If @EYand —p E .

Corollary

Y ac ¢ iff = = —e.

Likewise, duals of Fine's (2016) valence/partial-truth accounts of AC
characterize replete truthmaker entailment (as FDE is equivalently
defined as reflection of falsity).

Before we proceed, two further remarks on
truthmakers and inclusion.

Maxim: Exactify!

Maxim: Exactify!

But what does it mean to exactify? When is a
semantics exact?

Maxim: Exactify!

But what does it mean to exactify? When is a
semantics exact?

Remark 1: On what it means for a semantics to
be exact.

When is a semantics exact?

- Say that & satisfies the inclusion principle if

pEY implies At(p) < At(y).

1

When is a semantics exact?

- Say that & satisfies the inclusion principle if
pEY implies At(p) < At(y).

- By analogy to relevant logics, | wish to propose/entertain:

1

When is a semantics exact?

- Say that & satisfies the inclusion principle if
pEY implies At(p) < At(y).
- By analogy to relevant logics, | wish to propose/entertain:

Criterion for exactness

A semantics is exact, or wholly relevant, only if its entailment
relation satisfies the inclusion principle.

1

When is a semantics exact?

- Say that & satisfies the inclusion principle if
pEY implies At(p) < At(y).
- By analogy to relevant logics, | wish to propose/entertain:

Criterion for exactness

A semantics is exact, or wholly relevant, only if its entailment
relation satisfies the inclusion principle.

- Non-incl./incl./replete entailment all come out exact. v

1

When is a semantics exact?

- Say that & satisfies the inclusion principle if
wEY implies At(p) < At(e).
- By analogy to relevant logics, | wish to propose/entertain:

Criterion for exactness

A semantics is exact, or wholly relevant, only if its entailment
relation satisfies the inclusion principle.

- Non-incl./incl./replete entailment all come out exact. v
- Caveat T: ¢ A (¢ — ¥) IF ¢ only when At(p) < At(y)?

- Caveat 2: How about explosion and its dual? Perhaps inclusion
modulo explosion and its dual??

3The signature invalidities of ‘inclusion logics’ include explosion and its dual, but
maybe exactness should only generalize the invalidity of simplification (think
counterfactuals, modalities, etc.).

1

Remark 2: On replete entailment and wholly
relevance.

A-B Analysis: Replete Entailment and Wholly Relevance

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:
1) For A; a conjunction of literals, and B; a disjunction of literals, let

A b Bj Aff Lit(Al) N th(B]) #* J.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:

1) For A; a conjunction of literals, and B; a disjunction of literals, let
A -1 B;j Aiff Lit(4;) n Lit(B;) # @.

2) Lift it as follows:
\VAirr AB; iff Vij:Aibr B

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:
1) For A; a conjunction of literals, and B; a disjunction of literals, let
A -1 B;j Aiff Lit(4;) n Lit(B;) # @.
2) Lift it as follows:
\VAirr AB; iff Vij:Aibr B
3) For arbitrary ¢, ¢ with normal forms ¢ = \/ A, = A B;, define
prry it \/Airr A B;.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:

1) For A; a conjunction of literals, and B; a disjunction of literals, let
A -1 B;j Aiff Lit(4;) n Lit(B;) # @.

2) Lift it as follows:
\VAirr AB; iff Vij:Aibr B

3) For arbitrary ¢, ¢ with normal forms ¢ = \/ A, = A B;, define

prry it \/Airr A B;.
Fact. o -ppr ¢ Iff o 1 9.

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:

1) For A; a conjunction of literals, and B; a disjunction of literals, let
A -1 B;j Aiff Lit(4;) n Lit(B;) # @.

2) Lift it as follows:
\VAirr AB; iff Vij:Aibr B

3) For arbitrary ¢, ¢ with normal forms ¢ = \/ A, = A B;, define

prry it \/Airr A B;.

Fact. o -ppr ¢ Iff o 1 9.

Equivalently,

$FpE Y iff fa. A;; fa. By, te leLit(4;) st [€ Lit(By)

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:

1) For A; a conjunction of literals, and B; a disjunction of literals, let
A -1 B;j Aiff Lit(4;) n Lit(B;) # @.

2) Lift it as follows:
\VAirr AB; iff Vij:Aibr B

3) For arbitrary ¢, ¢ with normal forms ¢ = \/ A, = A B;, define

prry it \/Airr A B;.

Fact. o -ppr ¢ Iff o 1 9.

Equivalently,

errpety iff fa A fa By, te. le Lit(4;) st [€ Lit(B))

ol iff fa. A;:(i) fa. Bj, te leLit(A4;) st | € Lit(By);

A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:
1) For A; a conjunction of literals, and B; a disjunction of literals, let
A -1 B;j Aiff Lit(4;) n Lit(B;) # @.
2) Lift it as follows:
\VAirr AB; iff Vij:Aibr B
3) For arbitrary ¢, ¢ with normal forms ¢ = \/ A, = A B;, define
prry it \/Airr A B;.
Fact. o -ppr ¢ Iff o 1 9.
Equivalently,
errpety iff fa A fa By, te. le Lit(4;) st [€ Lit(B))
© I iff fa. A;:(i) fa. Bj, te leLit(A4;) st | € Lit(By);
(i) fa. I € Lit(4;), te. B, st [€ Lit(B;).

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be
given a double-barreled analysis?

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be
given a double-barreled analysis?

2. For instance, can (non-)inclusive entailment be captured by
stronger inclusion principles?

Follow-ups and future work

Follow-ups I'd like to think about:

1.

Like replete entailment, can other truthmaker entailments be
given a double-barreled analysis?

For instance, can (non-)inclusive entailment be captured by
stronger inclusion principles?

Can (or has) a truthmaker semantics been given for

pFrpetY and At(p) € At(y)?

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be
given a double-barreled analysis?

2. For instance, can (non-)inclusive entailment be captured by
stronger inclusion principles?

3. Can (or has) a truthmaker semantics been given for
Y FFDE P and At(QD) c At(lﬁ)?

4. Replete entailment admits BSML-style contrapositive semantics
(¢ IF ¢ = = = —p). Do (non-)inclusive entailment also?

Follow-ups and future work

Follow-ups I'd like to think about:

1. Like replete entailment, can other truthmaker entailments be
given a double-barreled analysis?

2. For instance, can (non-)inclusive entailment be captured by
stronger inclusion principles?

3. Can (or has) a truthmaker semantics been given for
Y FFDE P and At(QD) c At(lﬁ)?

4. Replete entailment admits BSML-style contrapositive semantics
(¢ IF ¢ = = = —p). Do (non-)inclusive entailment also?

5. Which other truthmaker logics admit A-B analyses?*

40bs: Failure of distributivity.

Translations.

Source logic: BSML with NE and ¢

14

Source logic: BSML with NE and ¢

Fix a non-empty finite set of propositional variables At, and define:

pu=L[NE|p|—p|lovelonp]| o

Definition
Fort < {v|v: At — {0,1}}, we have

t = NE iff t+ o

t = NE iff t=g

tE $p iff dsctsuchthatg #skE @
t= $p iff Vsct:s=o

tE L iff t=0

td L always

14

Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

pu=L|p|—p|evel|supee | {s*)e,

forpe Aty := {py,p- | p€ At},

Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

pu=L|p|—p|evel|supee | {s*)e,

forpe Aty := {p4,p— | p € At}, interpreted over distributive
semilattices (S, v),

Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

pu=L|p|—p|evel|supee | {s*)e,

forpe Aty := {p4,p— | p € At}, interpreted over distributive
semilattices (S, v), where

sl {supypyp iff Jt,ust ti-e, ul-, and s =t v u.
s {s*Hp iff 3s1,...,s, 5t eachs;l-pands=51v - Vs,

Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

pu=L|p|—p|evel|supee | {s*)e,

forpe Aty := {p4,p— | p € At}, interpreted over distributive
semilattices (S, v), where

sl {supypyp iff Jt,ust ti-e, ul-, and s =t v u.
s {s*Hp iff 3s1,...,s, 5t eachs;l-pands=51v - Vs,

Objective: Define translation pair -, -~ sit. for all ¢, 1:

wEY iff Lo IFyT.

Translating BSML

Set

and define -+, -~ via the double-recursive clauses:

J_Jr

I := {H(NET v NE7), /\ (supyptp~},
peEAt

NE

A\~ Ap?)

peEALt
H{(S*)p+

¥
(sup)p™ P
SD-f- A ’l/J+
P(NET A ¢™)

N\ @ Ap7)

peEAt
H{s* p_

T AYT
(supyp~ 9~
Ho™.

Translating BSML

Set
I = {H(NEY v NED), A sup)ptp),
peAt
and define -, -~ via the double-recursive clauses:
1T = NET 1= 3= T
NEF = A (T ApT) NE~ = A@ rp)
peEAt peEAt
pt o= H(s")ps I = H(s")p-
(o) = e (o)™ = T
(evy)™ = (supypTy™ (evy)™ = ¢~ Ag”
(pAg)™ = ot ay” (pry)” = (suppp ¢~
(#0)" = P(NET A ") (40)” = Hy™

Theorem
pEY iff T,ot -oyt. J
16

BSML translation contra truthmaker translation

Translation clauses for BSML:

()" = Hs*ps ()~ = H(s")p-
(o)™ = ¢~ (=)~ = F
(pv)t = (supppty® (pvey)™ = ¢ Ay
(pr)t = ofay” (pA®)” = (supyp 9.

BSML translation contra truthmaker translation

Translation clauses for BSML:

()" = Hs*ps ()~ = H(s")p-
(o)™ = ¢~ (=)~ = F
(pv)t = (supppty® (pvey)™ = ¢ Ay
(pr)t = ofay” (pAy)” = (suppp 9

= ps (p)~ = p
()t = ¢ (—p)~ = o*
(pAp)t = (supyptyt (prg)” = @ vy~
(pv)t = pf vyt (pve)™ = (suppp 9.

5Van Benthem (2019); see also SBK (2023).

Translating inquisitive logic

Translating inquisitive logic

For the case of inquisitive logic, translate v, — as follows:

Translating inquisitive logic

For the case of inquisitive logic, translate v, — as follows:

(pv)T =" vyt
(p = P)* = H(p* —¥™).

Translating inquisitive logic

For the case of inquisitive logic, translate v, — as follows:

(pv)T =" vyt
(p = P)* = H(p* —¥™).

Theorem (translation of Inq)

0EY iff et iot.

Translating inquisitive logic

For the case of inquisitive logic, translate v, — as follows:

(pv)T =" vyt
(p = P)* = H(p* —¥™).

Theorem (translation of Inq)

0EY iff et iot.

Remark

The translation can be extended to other propositional team logics
too, including all fragments of the grammar:

pu=L|NE|p|—alove|lorp|do|love|lp—p|~p|

=(&d) | 6lad | @< d|dld|ara.

Thank you!

References i

19

(Propositional) team logics: connectives

On connectives:

20

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for {—, A, v} gives us classical logic.

20

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for {—, A, v} gives us classical logic.

- Fact 2: In classical logic, {—, A, v} is famously functionally complete:
all other connectives are definable by these.

20

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for {—, A, v} gives us classical logic.

- Fact 2: In classical logic, {—, A, v} is famously functionally complete:
all other connectives are definable by these.

- Fact 3: In team semantics, {—, A, v} can only capture a fraction of the
expressible connectives. For example, v is not definable using {—, A, v}.

20

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for {—, A, v} gives us classical logic.

- Fact 2: In classical logic, {—, A, v} is famously functionally complete:
all other connectives are definable by these.

- Fact 3: In team semantics, {—, A, v} can only capture a fraction of the
expressible connectives. For example, v is not definable using {—, A, v}.

- Consequence: We have a semantic framework for expressions beyond
classical assertions, such as questions.

20

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for {—, A, v} gives us classical logic.

- Fact 2: In classical logic, {—, A, v} is famously functionally complete:
all other connectives are definable by these.

- Fact 3: In team semantics, {—, A, v} can only capture a fraction of the
expressible connectives. For example, v is not definable using {—, A, v}.

- Consequence: We have a semantic framework for expressions beyond
classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily
expressible in single-valuation semantics;

20

(Propositional) team logics: connectives

On connectives:

- Fact 1: Team semantics for {—, A, v} gives us classical logic.

- Fact 2: In classical logic, {—, A, v} is famously functionally complete:
all other connectives are definable by these.

- Fact 3: In team semantics, {—, A, v} can only capture a fraction of the
expressible connectives. For example, v is not definable using {—, A, v}.

- Consequence: We have a semantic framework for expressions beyond
classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily
expressible in single-valuation semantics; and thus for considering new
connectives!

20

(Propositional) team logics: propositionhood

21

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions.

21

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

21

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

21

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams.

21

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties.

21

- Given any condition-based

semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

In team semantics,
conditions are teams.

So, propositions are sets of
teams. Caveat: The standard
terminology is not

‘propositions’ but ‘properties’.

(Propositional) team logics: propositionhood

Example
{LC’U%’Ug}

{1)11)2} 01[113 {UQUB}

{un} K dv2}t X {us}

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties’. v

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties’.

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties’.

21

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider
natural restrictions on what a proposition is.

21

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider
natural restrictions on what a proposition is. Or what different kinds of
propostions/meanings there are! For instance, assertions contra questions.

21

(Propositional) team logics: propositionhood

- Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition = a set of
conditions.

- In team semantics,
conditions are teams.

- So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties’.

Since our meaning space now has structure (as powersets), we can consider
natural restrictions on what a proposition is. Or what different kinds of
propostions/meanings there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)

21

Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily
expressible in single-valuation semantics; and thus for considering
new notions of propositionhood!

22

Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily

expressible in single-valuation semantics; and thus for
I

Definition (some restrictions on propositionhood)

¢ is downward closed: [sEdandtSs] = tE¢

¢ is union closed: [sE¢faseS+2] — | JSE4
¢ has the empty team property: & & ¢

¢ is flat: sE¢p < {viEo¢forallves

¢ is convex: [8}=¢,ul=¢,sgtgu]=>t}=¢)

22

Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily
expressible in single-valuation semantics; and thus for considering
new notions of propositionhood!

Definition (some restrictions on propositionhood)

¢ is downward closed: [sEdandtSs] = tE¢

¢ is union closed: [sE¢faseS+2] — | JSE4
¢ has the empty team property: & & ¢

¢ is flat: sE¢p < {viEo¢forallves

¢ is convex: [sEduEsCtcu] = tE=¢

4

Convexity generalizes downward closure:

downward closed = convex

22

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of
propositionhood are closely connected.

23

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of
propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e,, classical
assertions are flat]

23

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of
propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e,, classical
assertions are flat]

- Formulas with v need not be union closed [i.e,, questions are not
union closed]

23

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of
propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e,, classical
assertions are flat]

- Formulas with v need not be union closed [i.e,, questions are not
union closed]

- Consider the epistemic might operator ¢, defined as
SE#) — FHCs:t#D&tE 9.

Formulas with 4 are not downward closed [i.e., epistemic
uncertainty is not persistent]

23

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of
propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e,, classical
assertions are flat]

- Formulas with v need not be union closed [i.e,, questions are not
union closed]

- Consider the epistemic might operator ¢, defined as
SE#) — FHCs:t#D&tE 9.

Formulas with 4 are not downward closed [i.e., epistemic
uncertainty is not persistent]

Theorem (Anttila and SBK (under review))
BSML is expressively complete for convex and union-closed properties. J

23

	Semantics for containment logics.
	Truthmakers and Inclusion.
	Translations.

