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Plan for the talk

I’ll discuss a cluster of observations on points of contact between
truthmaker and information semantics. These fall under three
connected themes:

• Information states (à la BSML) and Containment.
• Truthmakers and Inclusion.
• Translations.
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Bilateral State-based Modal Logic (BSML) [Aloni (2022)]

Traditionally (in, e.g., CPC), formulas φ are evaluated at single
valuations v : AtÑ t0, 1u, v ( φ.

In BSML, like in inquisitive semantics, formulas are evaluated at sets
of valuations (‘teams’) t Ď tv | v : AtÑ t0, 1uu, t ( φ.

Definition (Semantic clauses)
For t Ď tv | v : AtÑ t0, 1uu, we define

t ( p iff @v P t, vppq “ 1

t ) p iff @v P t, vppq “ 0

t ( ␣φ iff t ) φ

t ) ␣φ iff t ( φ

t ( φ_ ψ iff D t1, t2 such that t1 ( φ; t2 ( ψ; and t “ t1 Y t2

t ) φ_ ψ iff t ) φ and t ) ψ

t ( φ^ ψ iff t ( φ and t ( ψ

t ) φ^ ψ iff D t1, t2 such that t1 ) φ; t2 ) ψ; and t “ t1 Y t2.
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Inferential patterns:

p * p _ q

p ^ q ( p

Observation 1: Mirror image of truthmaker entailment
Observation 2: Telltale of containment logics
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Two guiding themes:

1. Points of contact between BSML and truthmaker
semantics.

2. BSML-style information semantics for containment
logics.
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Semantics for containment logics.



Containment and relevance

Containment logics obey the the proscriptive principle:

φ $ ψ implies Atpφq Ě Atpψq.

Strong form of variable sharing:

φ $ ψ implies Atpφq XAtpψq ‰ ∅.

Signature invalidities:

1. p^␣p & q [like relevant logics]
2. p & q _␣q [like relevant logics]
3. p & p_ q [like BSML]
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Angell’s Analytic Entailment (AC)

One prominent containment logic is Angell’s analytic entailment AC.
AC is, as shown by Ferguson (2016) and Fine (2016), the containment
fragment of FDE:

φ $AC ψ iff φ $FDE ψ and Litpφq Ě Litpψq.

Of interest to us because:

• It is a containment logic.
• Fine (2016) provided a complete truthmaker semantics for AC.
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First goal: BSML-style semantics for AC.
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BSML and classicality

Recall the BSML semantics: for t P Pptv | v : AtÑ t0, 1uu we define

t ( p iff @v P t, vppq “ 1

t ) p iff @v P t, vppq “ 0

t ( ␣φ iff t ) φ

t ) ␣φ iff t ( φ

t ( φ_ ψ iff D t1, t2 such that t1 ( φ; t2 ( ψ; and t “ t1 Y t2

t ) φ_ ψ iff t ) φ and t ) ψ

t ( φ^ ψ iff t ( φ and t ( ψ

t ) φ^ ψ iff D t1, t2 such that t1 ) φ; t2 ) ψ; and t “ t1 Y t2.

Problem: p^␣p ( q.
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BSML and classicality

Four-valued BSML semantics: for t P Pptv | v : AtÑ Ppt0, 1uqu we
define

t ( p iff @v P t, vppq Q 1

t ) p iff @v P t, vppq Q 0

t ( ␣φ iff t ) φ

t ) ␣φ iff t ( φ

t ( φ_ ψ iff D t1, t2 such that t1 ( φ; t2 ( ψ; and t “ t1 Y t2

t ) φ_ ψ iff t ) φ and t ) ψ

t ( φ^ ψ iff t ( φ and t ( ψ

t ) φ^ ψ iff D t1, t2 such that t1 ) φ; t2 ) ψ; and t “ t1 Y t2.

Problem solved: p^␣p * q.
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BSML-style semantics for AC

FDE semantics: Given PpXq, V `, V ´ : AtÑ PPpXq s.t.

• V `ppq is a non-empty ideal;
• V ´ppq is a non-empty ideal,

we define for t P PpXq
t ( p iff t P V `ppq

t ) p iff t P V ´ppq

t ( ␣φ iff t ) φ

t ) ␣φ iff t ( φ

t ( φ_ ψ iff D t1, t2 such that t1 ( φ; t2 ( ψ; and t “ t1 Y t2

t ) φ_ ψ iff t ) φ and t ) ψ

t ( φ^ ψ iff t ( φ and t ( ψ

t ) φ^ ψ iff D t1, t2 such that t1 ) φ; t2 ) ψ; and t “ t1 Y t2.

Theorem (FDE completeness)
φ ( ψ if and only if φ $FDE ψ.
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BSML-style semantics for AC

Four-val. BSML‹ semantics: Given PpXq, V `, V ´ : AtÑ PPpXq s.t.

• V `ppq is an ideal but for the empty set;
• V ´ppq is an ideal but for the empty set,

we define for t P PpXq
t ( p iff t P V `ppq

t ) p iff t P V ´ppq

t ( ␣φ iff t ) φ

t ) ␣φ iff t ( φ

t ( φ_ ψ iff D t1, t2 such that t1 ( φ; t2 ( ψ; and t “ t1 Y t2

t ) φ_ ψ iff t ) φ and t ) ψ

t ( φ^ ψ iff t ( φ and t ( ψ

t ) φ^ ψ iff D t1, t2 such that t1 ) φ; t2 ) ψ; and t “ t1 Y t2.

Theorem (Four-val. BSML‹ completeness)
φ ( ψ if and only if φ (BSML‹ ψ.
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FDE, AC, and BSML‹

FDE
Always: JpK “ I Q ∅.
Example:

tx,y,zu

txu tyu tzu

∅

tx,yu tx,zu ty,zu

JpK “ blue;J␣pK “ red.

AC
Possibly: JpK “ I .
Example:

tx,y,zu

txu tyu tzu

∅

tx,yu tx,zu ty,zu

JpK “ blue;J␣pK “ red.

BSML‹

Never: JpK “ I S ∅.
Example:

tx,y,zu

txu tyu tzu

∅

tx,yu tx,zu ty,zu

JpK “ blue;J␣pK “ red.
7



Follow-ups

We obtained a complete semantics for AC.

Question: As AC is characterized by

φ $FDE ψ and Litpφq Ě Litpψq,

can we also give semantics for the logic characterized by

φ $FDE ψ and Atpφq Ě Atpψq?

Theorem
Require V `ppq ‰ ∅ô V ´ppq ‰ ∅. Then

φ ( ψ iff φ $FDE ψ and Atpφq Ě Atpψq.

Proof. As before (note available). [Proofs work for distr. lattices too.]
Follow-ups:
• What other containment logics arise by varying the frames (lattices,
semilattices, distributive semilattices, etc.) or valuations?

• For instance, can we obtain a complete semantics for Correia’s
(2016) logic of factual equivalence?
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And recall the two guiding themes:

1. Points of contact between BSML and truthmaker
semantics.

2. BSML-style semantics for containment logics.
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Truthmakers and Inclusion.



Replete truthmaker entailment

Write φ , ψ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)

φ , ψ iff ␣ψ ( ␣φ

Proof.
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Replete truthmaker entailment

Write φ , ψ for replete truthmaker preservation.

Theorem (a semantics complete for replete entailment)

φ , ψ iff ␣ψ ( ␣φ

Proof.

␣ψ ( ␣φ iff ␣ψ $FDE ␣φ and Litp␣ψq Ě Litp␣φq

iff φ $FDE ψ and Litpφq Ď Litpψq

iff φ , ψ. l

Theorem2

Replete truthmaker entailment is the inclusion fragment of FDE; i.e.,

φ , ψ iff φ $FDE ψ and Litpφq Ď Litpψq.

2I imagine this is known, but I haven’t found it stated. 9



A sample of corollaries

Corollary
φ $FDE ψ and Litpφq “ Litpψq iff φ ( ψ and ␣ψ ( ␣φ

iff ␣ψ , ␣φ and φ , ψ.

φ %$FDE ψ and Litpφq Ě Litpψq iff φ ( ψ and ␣φ ( ␣ψ
iff ␣ψ , ␣φ and ψ , φ.

Corollary (when V `ppq ‰ ∅ô V ´ppq ‰ ∅)
φ $FDE ψ and Atpφq “ Atpψq iff φ ( ψ and ␣ψ ( ␣φ.

φ %$FDE ψ and Atpφq Ě Atpψq iff φ ( ψ and ␣φ ( ␣ψ.

Corollary
φ $AC ψ iff ␣ψ , ␣φ.

Likewise, duals of Fine’s (2016) valence/partial-truth accounts of AC
characterize replete truthmaker entailment (as FDE is equivalently
defined as reflection of falsity).
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Before we proceed, two further remarks on
truthmakers and inclusion.
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Maxim: Exactify!

But what does it mean to exactify? When is a
semantics exact?

Remark 1: On what it means for a semantics to
be exact.
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When is a semantics exact?

• Say that ( satisfies the inclusion principle if

φ ( ψ implies Atpφq Ď Atpψq.

• By analogy to relevant logics, I wish to propose/entertain:

Criterion for exactness
A semantics is exact, or wholly relevant, only if its entailment
relation satisfies the inclusion principle.

– Non-incl./incl./replete entailment all come out exact.
– Caveat 1: φ^ pφÑ ψq , ψ only when Atpφq Ď Atpψq?
– Caveat 2: How about explosion and its dual? Perhaps inclusion
modulo explosion and its dual?
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– Caveat 2: How about explosion and its dual? Perhaps inclusion
modulo explosion and its dual?3
3The signature invalidities of ‘inclusion logics’ include explosion and its dual, but
maybe exactness should only generalize the invalidity of simplification (think
counterfactuals, modalities, etc.).
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Remark 2: On replete entailment and wholly
relevance.
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A-B Analysis: Replete Entailment and Wholly Relevance

Recall Anderson and Belnap’s (1962) tautological entailments:

1) For Ai a conjunction of literals, and Bj a disjunction of literals, let

Ai $T Bj :iff LitpAiq X LitpBjq ‰ ∅.

2) Lift it as follows:
ł

Ai $T

ľ

Bj :iff @i, j : Ai $T Bj .

3) For arbitrary φ,ψ with normal forms φ ”
Ž

Ai, ψ ”
Ź

Bj , define

φ $T ψ :iff
ł

Ai $T

ľ

Bj .

Fact. φ $FDE ψ iff φ $T ψ.
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φ $FDE ψ iff f.a. Ai: f.a. Bj , t.e. l P LitpAiq s.t. l P LitpBjq
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Follow-ups and future work

Follow-ups I’d like to think about:

1. Like replete entailment, can other truthmaker entailments be
given a double-barreled analysis?

2. For instance, can (non-)inclusive entailment be captured by
stronger inclusion principles?

3. Can (or has) a truthmaker semantics been given for

φ $FDE ψ and Atpφq Ď Atpψq?

4. Replete entailment admits BSML-style contrapositive semantics
(φ , ψ ô ␣ψ ( ␣φ). Do (non-)inclusive entailment also?

5. Which other truthmaker logics admit A-B analyses?4

4Obs: Failure of distributivity.

13
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Translations.



Source logic: BSML with NE and ♦

Fix a non-empty finite set of propositional variables At, and define:

φ ::“ K | NE | p | ␣φ | φ_ φ | φ^ φ | ♦φ.

Definition
For t Ď tv | v : AtÑ t0, 1uu, we have

t ( NE iff t ‰ ∅
t ) NE iff t “ ∅
t ( ♦φ iff D s Ď t such that ∅ ‰ s ( φ

t ) ♦φ iff @s Ď t: s ) φ

t ( K iff t “ ∅
t ) K always

14
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Target logic: modal information logic

Target logic is the modal logic in the language with two modalities,

φ ::“ K | p | ␣φ | φ_ φ | xsupyφφ | xs˚yφ,

for p P At˘ :“ tp`, p´ | p P Atu, interpreted over distributive
semilattices pS,Oq, where

s , xsupyφψ iff D t, u s.t. t , φ, u , ψ, and s “ tO u.
s , xs˚yφ iff D s1, . . . , sn s.t. each si , φ and s “ s1 O ¨ ¨ ¨ O sn.

Objective: Define translation pair ¨`, ¨´ s.t. for all φ,ψ:

φ ( ψ iff Γ, φ` , ψ`.
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Translating BSML

Set
Γ :“ tHpNE` _ NE´q,

ľ

pPAt

xsupyp`p´u,

and define ¨`, ¨´ via the double-recursive clauses:

K` :“ NE´ K´ :“ J

NE` :“
ľ

pPAt

␣pp` ^ p´q NE´ :“
ľ

pPAt

pp` ^ p´q

p` :“ Hxs˚yp` p´ :“ Hxs˚yp´

p␣φq` :“ φ´ p␣φq´ :“ φ`

pφ_ ψq` :“ xsupyφ`ψ` pφ_ ψq´ :“ φ´ ^ ψ´

pφ^ ψq` :“ φ` ^ ψ` pφ^ ψq´ :“ xsupyφ´ψ´

p♦φq` :“ PpNE` ^ φ`q p♦φq´ :“ Hφ´.

Theorem
φ ( ψ iff Γ, φ` , ψ`.
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Theorem
φ ( ψ iff Γ, φ` , ψ`.
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BSML translation contra truthmaker translation

Translation clauses for BSML:

ppq` “ Hxs˚yp` ppq´ “ Hxs˚yp´

p␣φq` “ φ´ p␣φq´ “ φ`

pφ_ ψq` “ xsupyφ`ψ` pφ_ ψq´ “ φ´ ^ ψ´

pφ^ ψq` “ φ` ^ ψ` pφ^ ψq´ “ xsupyφ´ψ´.

Translation clauses for truthmaker semantics:5
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5Van Benthem (2019); see also SBK (2023).
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Translating inquisitive logic

For the case of inquisitive logic, translate ě ,Ñ as follows:

pφ

ě

ψq` :“ φ` _ ψ`

pφÑ ψq` :“ Hpφ` Ñ ψ`q.

Theorem (translation of Inq)
φ ( ψ iff Γ, φ` , ψ`.

Remark
The translation can be extended to other propositional team logics
too, including all fragments of the grammar:

φ ::“K | NE | p | ␣α | φ_ φ | φ^ φ | ♦φ | φ ě

φ | φÑ φ | „φ |

“pα⃗; α⃗q | α⃗Kα⃗α⃗ | α⃗ Ď α⃗ | α⃗|α⃗ | α⃗Υα⃗.
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Thank you!
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(Propositional) team logics: connectives

On connectives:

• Fact 1: Team semantics for t␣,^,_u gives us classical logic.
• Fact 2: In classical logic, t␣,^,_u is famously functionally complete:
all other connectives are definable by these.

• Fact 3: In team semantics, t␣,^,_u can only capture a fraction of the
expressible connectives. For example, ě is not definable using t␣,^,_u.

• Consequence: We have a semantic framework for expressions beyond
classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily
expressible in single-valuation semantics; and thus for considering new
connectives!
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(Propositional) team logics: propositionhood

– Given any condition-based
semantics, we obtain a
notion of propositionhood
defined as a set of
conditions. Slogan:
Proposition “ a set of
conditions.

– In team semantics,
conditions are teams.

– So, propositions are sets of
teams. Caveat: The standard
terminology is not
‘propositions’ but ‘properties’.

Example
txv2v3u

tv1u tv2u tv3u

∅

tv1v2u tv1v3u tv2v3u

Since our meaning space now has structure (as powersets), we can consider
natural restrictions on what a proposition is. Or what different kinds of

propostions/meanings there are! For instance, assertions contra questions.
(Note the analogy with generalized quantifiers.)
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Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily
expressible in single-valuation semantics; and thus for considering
new notions of propositionhood!

Definition (some restrictions on propositionhood)

ϕ is downward closed: rs ( ϕ and t Ď ss ùñ t ( ϕ

ϕ is union closed: rs ( ϕ f.a. s P S ‰ Hs ùñ
ď

S ( ϕ

ϕ has the empty team property: H ( ϕ

ϕ is flat: s ( ϕ ðñ tvu ( ϕ for all v P s
ϕ is convex: rs ( ϕ, u ( ϕ, s Ď t Ď us ùñ t ( ϕ

Convexity generalizes downward closure:

downward closed ùñ convex
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Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of
propositionhood are closely connected. Here are some examples:

• Classical formulas are flat (so union closed) [i.e., classical
assertions are flat]

• Formulas with ě need not be union closed [i.e., questions are not
union closed]

• Consider the epistemic might operator ♦, defined as

s ( ♦ϕ ðñ Dt Ď s : t ‰ ∅ & t ( ϕ.

Formulas with ♦ are not downward closed [i.e., epistemic
uncertainty is not persistent]

Theorem (Anttila and SBK (under review))
BSML is expressively complete for convex and union-closed properties.
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